UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE EXPRESSÃO GRÁFICA

DISCIPLINA: EXPRESSÃO GRÁFICA I

CURSO: ARQUITETURA

AUTORES: Luzia Vidal de Souza

Deise Maria Bertholdi Costa Paulo Henrique Siqueira

Capítulo I - Introdução

O MÉTODO DAS PROJEÇÕES COTADAS

O método foi idealizado por Fellipe Buache em 1737 para o levantamento da carta hidrográfica do Canal da Mancha. Em 1830 o método foi sistematizado pelos militares franceses. É bastante utilizado na solução de coberturas e como base para o Desenho Topográfico.

O método das projeções cotadas é um sistema gráfico-analítico que utiliza somente uma projeção do objeto estudado. Cada projeção é acompanhada de um número que representa a distância do ponto ao plano de projeção.

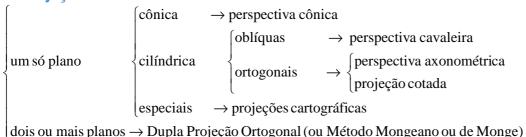
Em todo sistema de projeção, devem ser definidos os seus elementos principais que são:

- Objeto a ser projetado
- Projetante
- Plano de projeção

1. Métodos de representação

- Dupla Projeção Ortogonal (Monge)
- Projeção Cotada (Büache)
- Projeção Central (Cousinery)
- Projeção Axonométrica (Polke)

2. Projeções



3. Operações fundamentais no desenho projetivo

3.1 Conceito de projetar

a) Projetar um ponto A a partir de um outro ponto O, distinto de A, significa determinar a reta pertencente aos dois pontos. A reta OA é denominada projetante do ponto A, e o ponto O é denominado de centro de projeção (Figura 1).

b) Projetar um ponto A a partir de uma reta r, não pertencente a esse ponto, significa determinar o plano pertencente ao ponto e à reta. Esse plano, α , é denominado plano projetante do ponto A, e a reta r é o eixo de projeção (Figura 2).

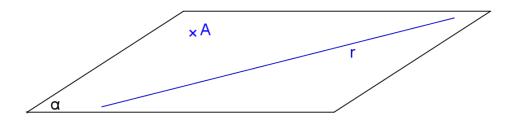


FIGURA 2 – PROJEÇÃO DO PONTO A, A PARTIR DA RETA r

c) Projetar uma reta r a partir de outra s significa determinar o plano definido pelas duas retas. O problema somente é possível se as retas forem coplanares, ou seja, concorrentes ou paralelas (Figura 3).

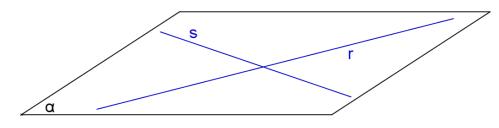


FIGURA 3 – PROJEÇÃO DE UMA RETA A PARTIR DE OUTRA

d) Projetar um objeto a partir de um ponto significa determinar as projetantes de todos os pontos desse objeto. Quando se quer projetar um sólido, normalmente são projetados somente os elementos necessários e suficientes que o determinam.

- em qualquer posição existe a∩b, menos para b//a.
- para que não exista exceção convencionou-se que b e a possuem um só ponto em comum: A_{∞}
- Dizemos então que $A_{\scriptscriptstyle \! \infty}$ é o ponto impróprio da reta a

Então a \cap b = A $_{\infty}$ sse a//b Assim, um ponto impróprio é estabelecido pela direção de uma reta.

3.2 Conceito de cortar

- a) Cortar uma reta r por outra s, significa obter o ponto (rs) comum às duas retas. O ponto considerado pode ser próprio ou impróprio, conforme as retas sejam concorrentes ou paralelas.
- b) Cortar um plano α por uma reta r, ou uma reta r por um plano α , significa obter o ponto r α comum à reta e ao plano (Figura 4).

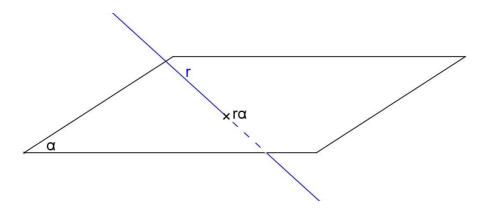


Figura 4 – Corte da Reta r no Plano α

c) Cortar um plano α outro β significa encontrar a reta $\alpha\beta$ comum a ambos os planos (Figura 5).

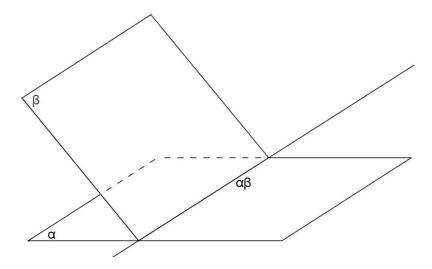


FIGURA 5 – CORTE DO PLANO α NO PLANO β

d) Cortar um objeto por um plano significa encontrar a seção plana produzida por este plano no sólido considerado (Figura 6).

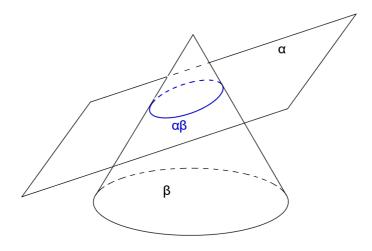


Figura 6 – Corte do Plano α na superfície $\,\beta\,$

Observação: o ponto ou a reta ou a curva quando determinados por cortes chamam-se traços.

4. Conceito de projeção cônica (ou central)

Considere um plano π' e um ponto fixo O não pertencente ao plano considerado. Denomina-se projeção central ou cônica, no plano π' , de um ponto A, distinto de O, ao traço A', produzido sobre o plano, pela reta projetante do ponto A (Figura 7).

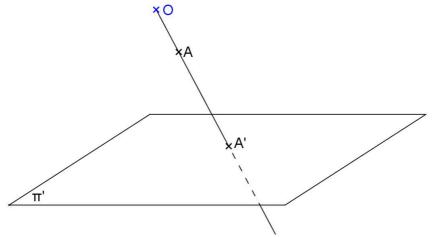


FIGURA 7 – PROJEÇÃO CÔNICA DO PONTO A

O plano π' é denominado plano de projeção e o ponto O é denominado centro, polo ou vértice de projeção.

A projeção central ou cônica é também denominada perspectiva cônica, ou perspectiva linear exata do ponto A.

Observações:

- Plano de projeção ≠ plano projetante.
- O sistema é chamado de projeção cônica, pois as projetantes descrevem uma superfície cônica.

5. Conceito de projeção cilíndrica (oblíqua ou ortogonal)

Denomina-se <u>projeção cilíndrica</u> de um ponto A, no plano π' a partir de O_{∞} , ao traço A' produzido sobre π' , pela reta projetante do ponto A (Figura 8).



FIGURA 8 – PROJEÇÃO CILÍNDRICA DO PONTO A

Observações:

• Dado o ponto A, A' é único, porém dado somente A' sabe-se que o ponto A pertence à reta projetante;

- O sistema é denominado projeção cilíndrica, pois as projetantes descrevem uma superfície cilíndrica;
- Os pontos do plano de projeção coincidem com suas projeções;
- Se a direção das projetantes for oblíqua ao plano de projeções tem-se o sistema de projeção Cilíndrica Oblíqua;
- Se a direção das projetantes for perpendicular ao plano de projeções tem-se o Sistema de Projeção Cilíndrica Ortogonal.

5.1 Propriedades das projeções cilíndricas (oblíquas ou ortogonais)

<u>Propriedade 1</u>: A projeção cilíndrica de uma reta não paralela à direção das projetantes é uma reta (Figura 9). A projeção cilíndrica de uma reta paralela à direção das projetantes é um ponto (Figura 10).

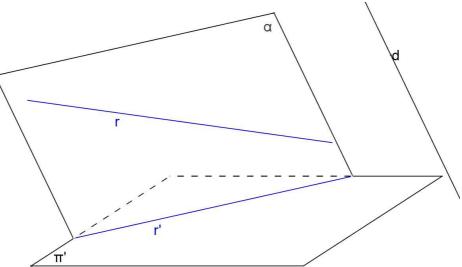
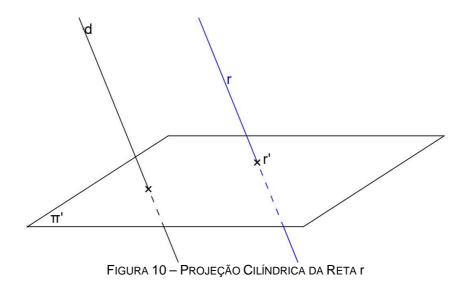


FIGURA 9 – PROJEÇÃO CILÍNDRICA DA RETA r



Observações:

- a) Se a projeção cilíndrica de uma reta é uma reta, então a reta objetiva não é paralela a direção das projetantes;
- b) Se a projeção cilíndrica de uma reta é um ponto, então a reta é paralela à direção das projetantes;
- c) Se uma reta é perpendicular ao plano de projeção, sua projeção cilíndrica-ortogonal sobre o mesmo será o seu traço no plano de projeção considerado. Reciprocamente, se a projeção ortogonal de uma reta sobre um plano reduzir-se a um ponto, então a reta será perpendicular ao plano de projeção, ou o que é equivalente, a reta será paralela à direção das projetantes.

- d) Uma reta r, não paralela à direção das projetantes, e sua projeção cilíndrica r' são coplanares; logo, pode ocorrer entre a reta e sua projeção uma das seguintes condições:
 - r e r' são concorrentes, neste caso a reta corta o plano de projeção (Figura 9);
 - São paralelas, neste caso a reta será paralela ao plano de projeção;
 - São coincidentes, neste caso a reta estará contida no plano de projeção.

<u>Propriedade 2</u>: Se duas retas r e s são paralelas, então as suas projeções cilíndricas ou são paralelas (Figura 11), ou são coincidentes (Figura 12) ou são pontuais (Figura 13).

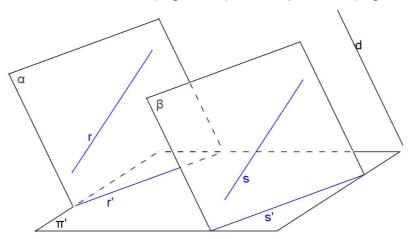


FIGURA 11 – PROJEÇÕES PARALELAS

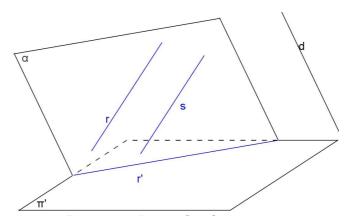


FIGURA 12 – PROJEÇÕES COINCIDENTES

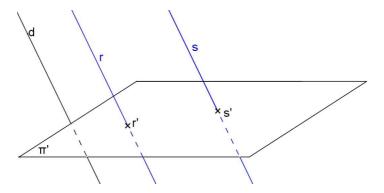


FIGURA 13 – PROJEÇÕES PONTUAIS

Observação: A recíproca da propriedade 2 não é verdadeira (Figura 14).

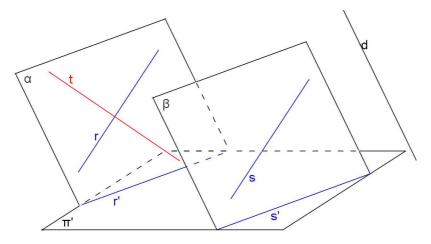


FIGURA 14 – CONTRA EXEMPLO DA RECÍPROCA DA PROPRIEDADE 2

<u>Propriedade 3</u>: Se dois segmentos são paralelos ou são colineares, então a razão entre eles no espaço conserva-se na projeção cilíndrica, desde que a direção dos segmentos não seja paralela à direção das projetantes (Figura 15).

Se
$$\begin{cases} \overline{AB} // \overline{CD} \\ \text{ou} \\ \text{colineares} \end{cases}$$
 e não paralelos a $d \Rightarrow \frac{\overline{AB}}{\overline{CD}} = \frac{\overline{A'B'}}{\overline{C'D'}}$

a) AB//CD

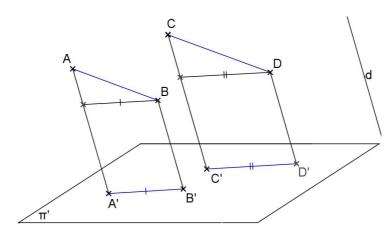


FIGURA 15 – RAZÃO ENTRE AS PROJEÇÕES DE SEGMENTOS PARALELOS

b) AB e CD colineares

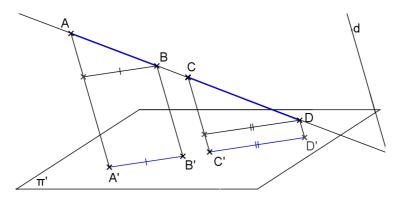


FIGURA 16 – RAZÃO ENTRE AS PROJEÇÕES DE SEGMENTOS COLINEARES

Conseqüência: Se M é ponto médio do segmento AB então M' é ponto médio da projeção do segmento AB (A'B').

Observação: A recíproca não é verdadeira. Ou seja, se AB/CD=A'B'/C'D' não implica que AB//CD ou colineares.

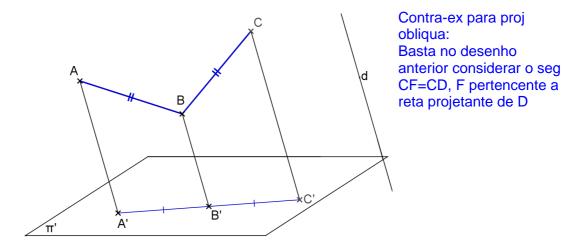


FIGURA 17 – CONTRA-EXEMPLO PARA A RECÍPROCA DA PROPRIEDADE 3

<u>Propriedade 4</u>: Se uma figura está contida num plano paralelo ao plano de projeção, então essa figura será congruente à sua projeção cilíndrica, isto é, a projeção cilíndrica desta figura está em verdadeira grandeza (V.G.) (Figura 17).

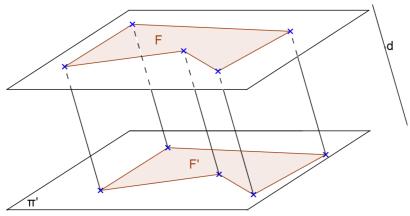


FIGURA 18 - PROPRIEDADE 4

Observação: A recíproca não é verdadeira em projeção oblíqua, porém é verdadeira em projeção ortogonal (Figura 19).

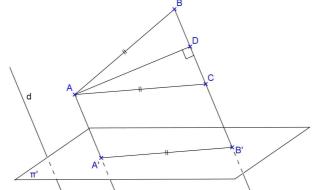


FIGURA 19 – CONTRA-EXEMPLO PARA A RECÍPROCA DA PROPRIEDADE 4

<u>Propriedade 5</u>: Qualquer figura contida num plano paralelo a direção das projetantes tem para projeção um segmento que está contido no traço do plano dessa figura sobre o plano de projeção (Figura 20).

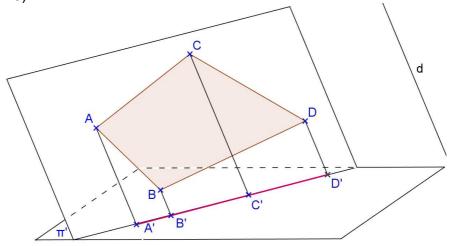


FIGURA 20- PROPRIEDADE 5

Observação: A recíproca da Propriedade 5 é verdadeira.

5.2 Propriedades das projeções cilíndricas ortogonais

<u>Propriedade 6</u>: Se um segmento é oblíquo ao plano de projeção π' , então sua projeção ortogonal é menor que a sua verdadeira grandeza (Figura 21).

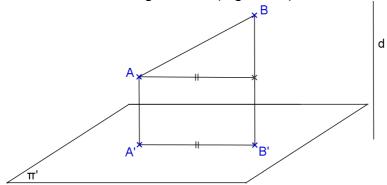


FIGURA 21 – PROPRIEDADE 6

Observação: A recíproca da Propriedade 6 é verdadeira.

<u>Propriedade 7</u>: Se duas retas são perpendiculares ou ortogonais entre si, sendo uma delas paralela ou pertencente ao plano de projeção e a outra não perpendicular a esse plano, então as projeções ortogonais dessas retas são perpendiculares entre si (Figura 22).

Resumindo:

$$\begin{array}{cccc}
r \perp s & \text{ou} & r \perp s & (1) \\
s & r /\!/ \pi' & \text{ou} & r \subset \pi' & (2) & \Rightarrow & r' \perp s' & (4) \\
s \not \pm \pi' & (3) & & & & \end{array}$$

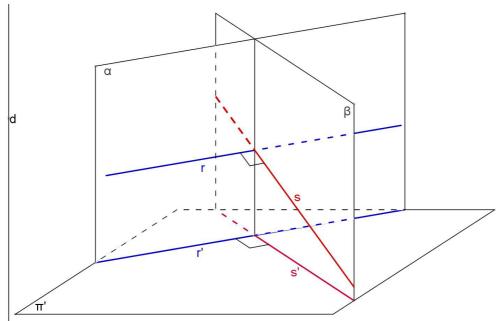


FIGURA 22 - PROPRIEDADE 7

Observação: As recíprocas da propriedade 7 são verdadeiras. São elas:

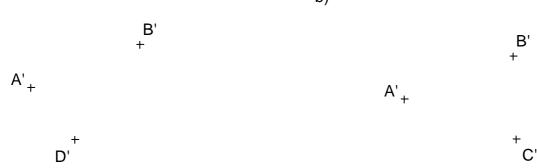
Recíproca 1: (2) + (3) +(4) \Rightarrow (1) Recíproca 2: (1) + (4) \Rightarrow (2) + (3)

Exercícios:

Considere um sistema de projeção cilíndrica com somente um plano de projeção π' . Escrever ao lado de cada exercício as propriedades geométricas e as propriedades das projeções cilíndricas utilizadas.

1. Representar o ponto médio M do segmento dado AB.

2. Representar o paralelogramo ABCD sendo dados três de seus vértices.



c) d)

3. Representar o paralelogramo ABCD sendo dados os pontos A e B e o ponto M de interseção das diagonais.

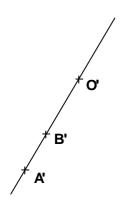
- c) A' + + M'≡B'
- 4. Representar o triângulo ABC sendo dados os vértices A e B e o baricentro G.

5. Representar o hexágono regular ABCDEF sendo dados dois vértices e o centro O da circunferência circunscrita.

O'

a) b)

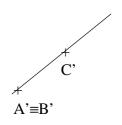
c)



6. Representar o hexágono regular ABCDEF sendo dados A, B e C

a) b)

c)



Capítulo II – Representação do ponto

1. O plano de representação

O plano π' situado na posição horizontal denomina-se Plano (ou Quadro) de Representação ou Plano de Projeção ou Plano de Comparação. Este plano divide o espaço em dois subespaços: superior e inferior (Figura 23). O centro de projeções, O_{∞} , é impróprio, pois a projeção é ortogonal.

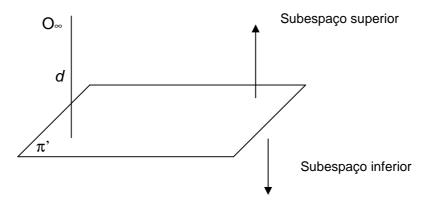


FIGURA 23 – PLANO DE PROJEÇÃO

2. Representação do ponto

Seja o ponto A, considere sua projeção cilíndrica ortogonal A' sobre o plano π' . O ponto A não fica individualizado somente por sua projeção A', é necessário mais um elemento, utiliza-se a cota do ponto. Assim, o ponto A fica representado por A' (a), conforme figura 24.

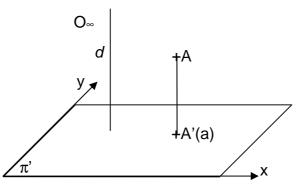


FIGURA 24 – REPRESENTAÇÃO DO PONTO

Dado A' como obter A?

E se existisse outro ponto B pertencente a reta projetante de A? Como diferenciar?

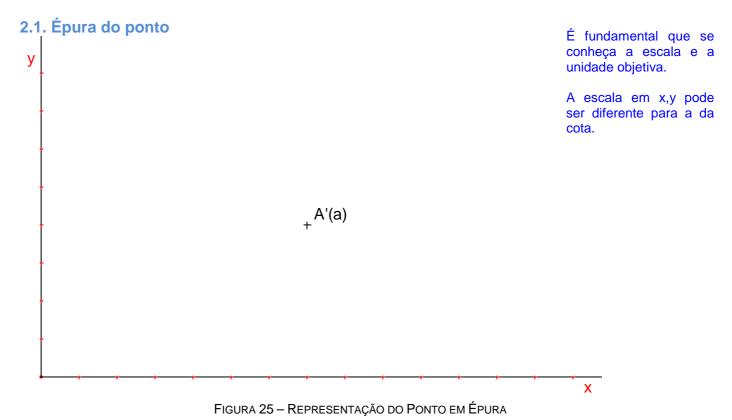
O método de projeção cotada é um sistema gráfico-algébrico, pois envolve uma projeção gráfica e um número.

A cota de um ponto é o número que expressa a distância do ponto P ao plano de projeção.

- Cota positiva = altura ou altitude
- Cota negativa = profundidade ou depressão
- π' é o lugar geométrico dos pontos de cota nula
- Os pontos de mesma cota constituem um plano paralelo ao π' .
- Os pontos pertencentes a um mesmo plano horizontal possuem a mesma cota.

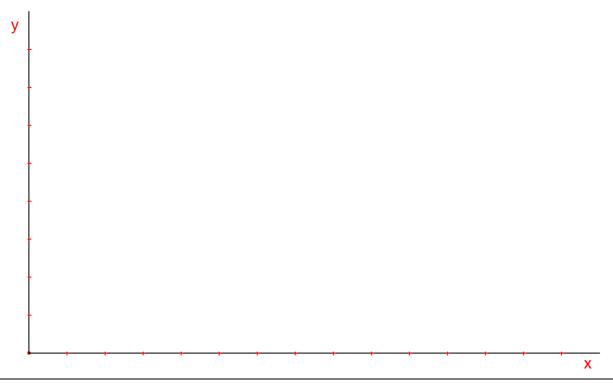
A épura do ponto é a representação plana da figura espacial, conforme apresentado na figura 25. O ponto fica determinado no sistema cartesiano, pelas suas coordenadas cartesianas, A(x, y, z), onde:

- x representa o valor no eixo das abscissas;
- y representa o valor no eixo das ordenadas;
- z representa o valor de cota do ponto, ou seja, sua distância até o plano π' .



Exercício: Representar a épura dos pontos dados, utilizando como unidade o mm e a escala natural.

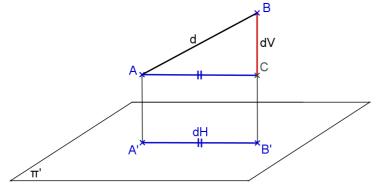
A(40,30,20), B(20,60,-30), C(90,70,40), D(90,70,10), E(80,40,0)



UFPR - Departamento de Expressão Gráfica - Professores: Deise M B Costa, Luzia V Souza e Paulo H Siqueira

2.2 Distância entre dois pontos

Para obter a distância *d* entre os dois pontos A e B, ou seja, a verdadeira grandeza (VG) do segmento AB, pode-se utilizar o processo gráfico (Figura 26) ou o algébrico.



Distância vertical: dV = |b-a| Distância horizontal: dH = A'B' Distância d² = dV² + dH²

FIGURA 26 – DISTÂNCIA ENTRE DOIS PONTOS

No processo algébrico, caso as cotas sejam diferentes, basta aplicar o Teorema de Pitágoras no triângulo retângulo; se os pontos possuem a mesma cota, então a distância entre eles é d=dH e se possuem a mesma reta projetante, então a distância entre eles é d=dV.

No processo gráfico, se os pontos possuem cotas distintas e projetantes distintas aplicase o rebatimento; se os pontos possuem a mesma cota então a VG do segmento AB é A'B'; e se pertencem a uma mesma reta projetante, então basta encontrar a diferença entre cotas dos pontos.

2.3 Rebatimento do plano projetante α sobre π' :

Basta rebater o plano projetante α do segmento AB em torno do eixo $\alpha\pi'$, obtendo-se a verdadeira grandeza (VG) da distância d entre A e B, bem como a distância horizontal dH e a vertical dV (Figura 27).

No espaço:

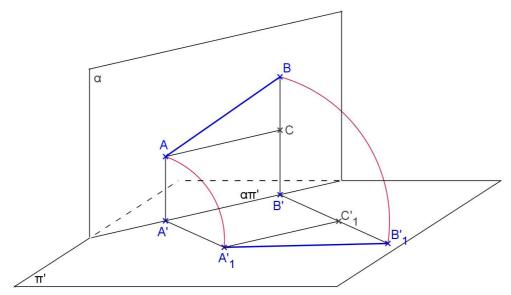
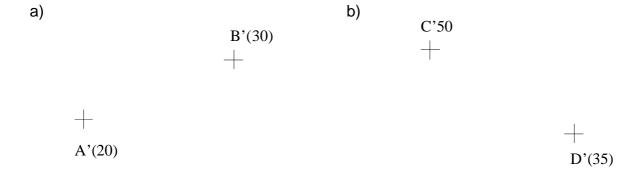


FIGURA 27 – REBATIMENTO DO PLANO α

<u>Exercício</u>: Encontrar, graficamente, a VG do segmento dado. u mm



2.4 Rebatimento do plano projetante α sobre β horizontal:

Basta rebater o plano projetante α do segmento AB em torno do eixo $\alpha\beta$ obtendo o segmento A₁B₁, cuja VG é o segmento A'₁B'₁ (Figura 28).

No espaço:

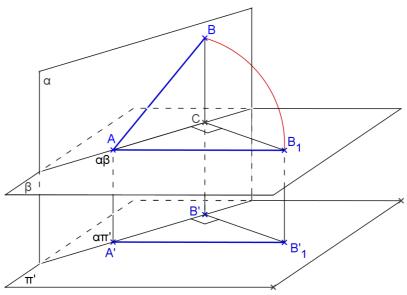


Figura 28 – Rebatimento do Plano α sobre β Horizontal

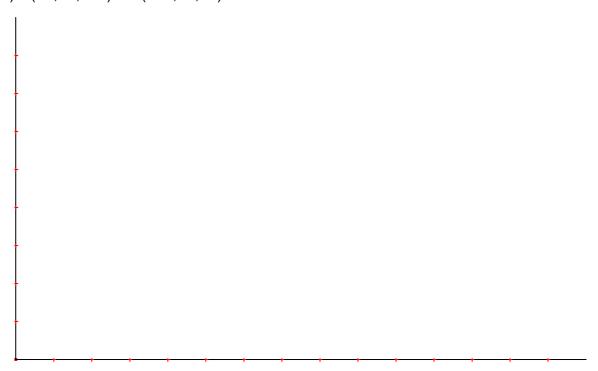
Exercício: Encontrar a VG do segmento AB.

+ A'(20)

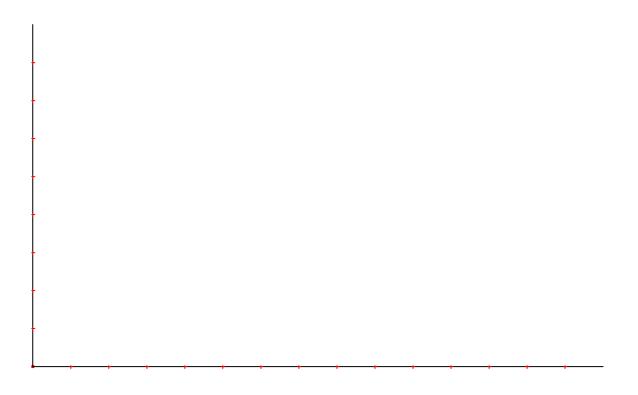
Exercícios Propostos

1. Representar a distância entre os pontos dados. u mm

a) A(50,40,100) e B(100,80,60)



b) C(40,70,20) e D(60,30,-30)



c) E(30,60,100) F(30,60,80)

d) Dados em posição G e H

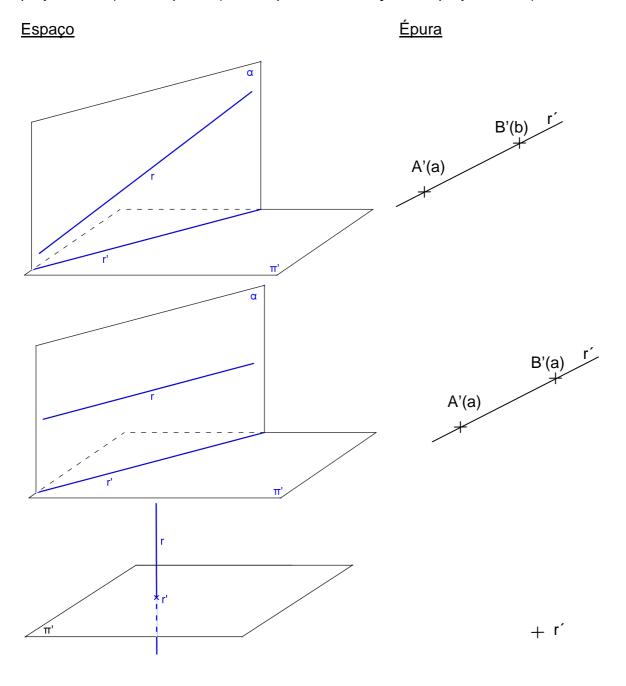
+ G'(40)

2) Na planta de um terreno foram assinalados dois pontos, um de cota 26m e outro de cota 17m. Sabendo-se que o desenho está na escala 1:100 e que em planta a distância entre os pontos é de 8cm, determinar a distância entre os pontos.

Capítulo III – Representação da reta

1. Representação da reta

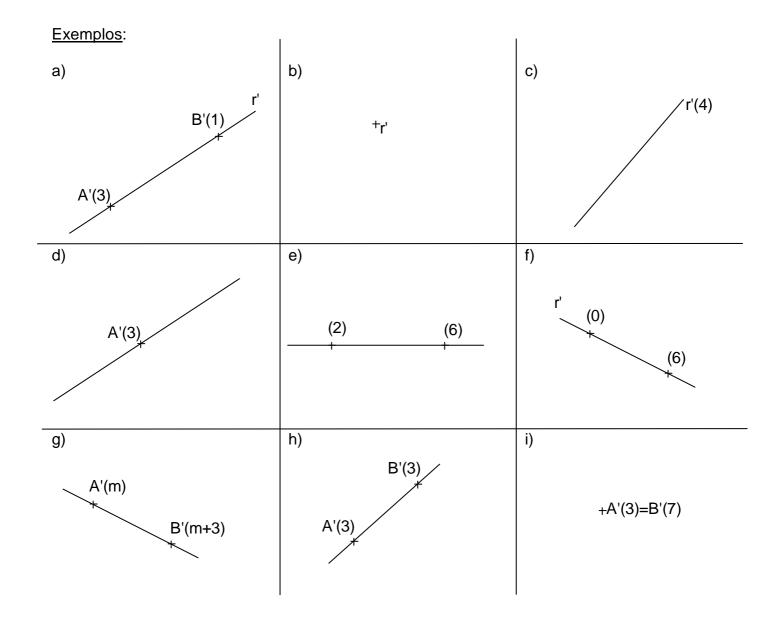
<u>Propriedade já vista</u>: Se r é uma reta então r' ou é uma reta (se r não for paralela à direção das projetantes d) ou um ponto (se r for paralela a direção das projetantes d)



2. Posições relativas de uma reta em relação ao Plano de Projeção

A reta pode ocupar posições distintas em relação ao Plano de Projeção, podendo ser:

- 1°) Reta qualquer: a reta qualquer é oblíqua em relação a π' , forma ângulo entre 0° e 90° com π' e todos os seus pontos possuem cotas distintas.
- 2º) Reta horizontal ou de nível: a reta de nível é paralela a π' , forma ângulo de 0º com π' e todos os seus pontos possuem a mesma cota.
- 3º) Reta vertical: a reta vertical é perpendicular a π' (reta projetante), forma ângulo de 90º com π' e todos os seus pontos tem projeções coincidentes com o traço da reta.



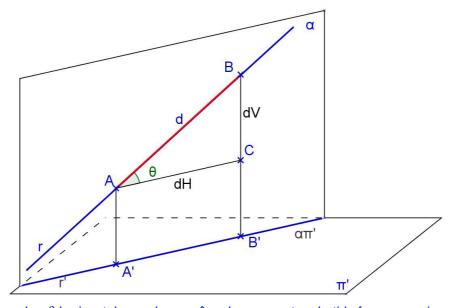
3. Elementos de uma reta

pertencentes a r 1º) Inclinação

A inclinação de uma reta é o menor ângulo θ que essa reta forma com o plano de representação, e pode ser obtido algebricamente, da seguinte forma:

como
$$\operatorname{tg}\theta=\frac{dV}{dH}$$
, onde $\operatorname{dV}=\operatorname{b}$ - a (diferença de cotas dos pontos) e dH=A'B' (projeção de AB) então $\theta=\operatorname{arc}\operatorname{tg}\frac{dV}{dH}$

Ou graficamente pelo rebatimento do plano projetante α da reta r.



em torno de $\alpha\pi'$ - ou sobre β horizontal e mede-se o ângulo que a reta rebatida faz com o eixo.

2º) Coeficiente de redução

O coeficiente de redução é dado por $\rho = \cos \theta = \frac{dH}{d}$

Relação entre a projeção e o objeto. Indica o quanto de foi reduzido – dá a noção da redução sofrida pela proj

3º) Declive:

O declive de uma reta é a tangente da sua inclinação, ou seja, de = tg $\theta = \frac{dV}{dH}$

Logo é a relação entre a diferença de cotas de 2 pontos da reta e a projeção do segmento definido pelos ptos

É comum exprimir o declive em porcentagem em vez de uma fração ou de um número decimal. Assim, em vez de se dizer, por exemplo, declive igual a 3/5 ou 0,6, usa-se dizer declive igual a 60%. Para inclinação zero não há declive. Para inclinação 90º o declive é infinito. E para inclinação 45º o declive é 100%.

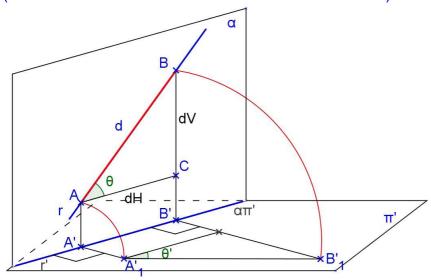
O declive também é chamado de declividade ou rampa.

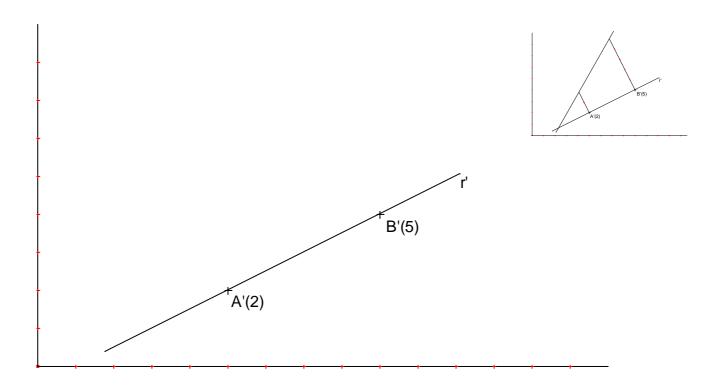
*se considerar o sentido: declive quando as cotas diminuem e aclive quando aumentam.

Exercício

Obter a inclinação da reta r(A,B) e a VG do segmento AB. Obter seu coeficiente de redução e seu declive.

(cabri: 3 elementos de uma reta/rebatimento de reta 2)

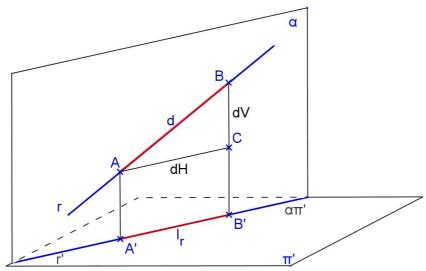




4º) Intervalo

O intervalo é uma distância horizontal de dois pontos de uma reta tais que a diferença de suas cotas seja igual a unidade.

Sejam A e B tais que |b-a|=1 unidade, sendo a e b as cotas dos pontos, respectivamente, então o intervalo I=dH=A'B'.



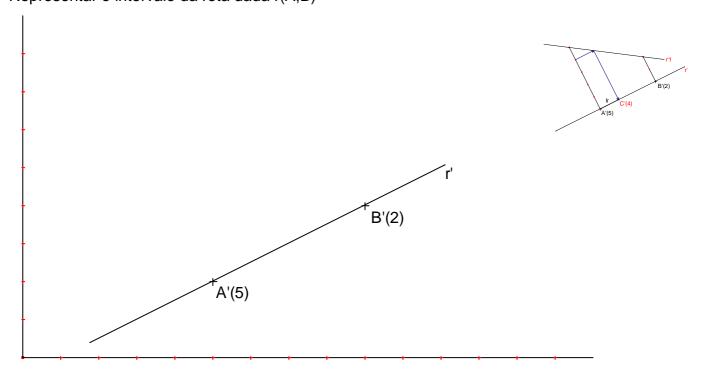
O declive é o inverso do intervalo unitário, pois:

$$\operatorname{tg} \theta = \frac{\operatorname{dV}}{\operatorname{dH}} = \frac{b - a}{A'B'} = \frac{1}{A'B'} :: \operatorname{tg} \theta = \frac{1}{A'B'} \Rightarrow A'B' = \frac{1}{\operatorname{tg} \theta}$$

A equidistância é um múltiplo do intervalo.

Exercício:

Representar o intervalo da reta dada r(A,B)



UFPR - Departamento de Expressão Gráfica - Professores: Deise M B Costa, Luzia V Souza e Paulo H Siqueira

5º) Escala de declive – Graduar uma reta

A escala de declive de uma reta r é a figura que se obtém representando sobre sua projeção r' as projeções dos pontos de cotas inteiras. Graduar uma reta é obter a escala de declive.

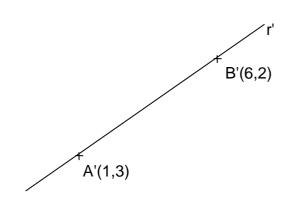
- Marcando os pontos de cotas inteiras e consecutivas teremos o intervalo da reta.
- Representamos por g_r a graduação da reta r (pontos de cotas inteiras).

Exercício

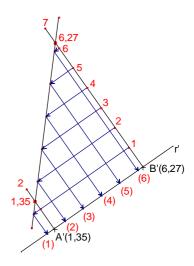
Graduar a reta r definida pelos pontos A e B. (APR, p.19)

u cm

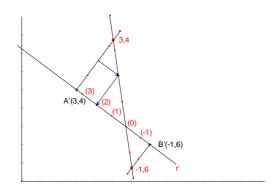
a)



b) A(3; 5; 3,4) B(7; 2; -1,6)

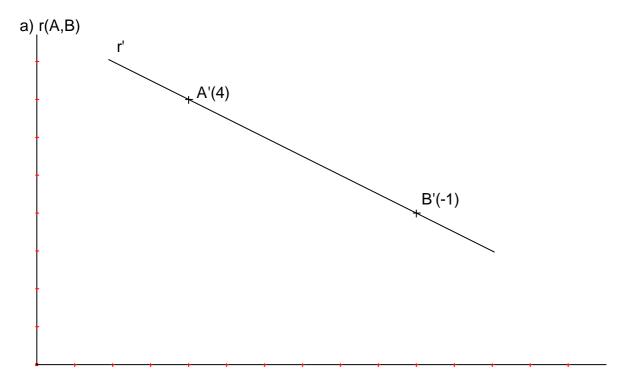


Resolver também por Thales (só que não tem VG, ângulo,...)



Exercícios Propostos

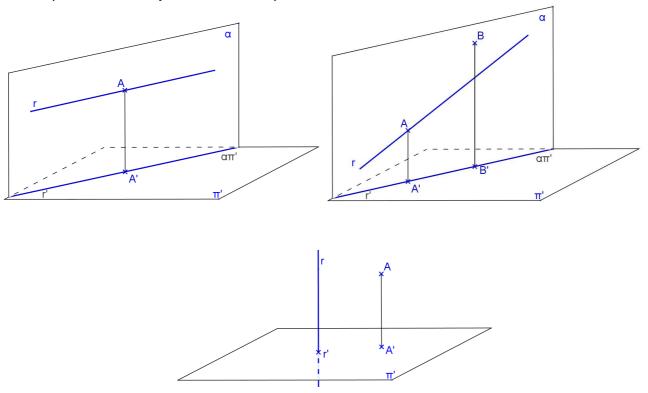
1) Encontrar o traço de r sobre π' . u cm



b) r(C,D), C(3, 2, 2) D(6, 4, 5)

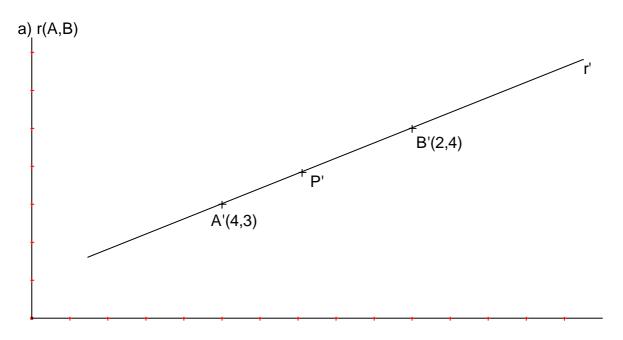
4. Pertinência de ponto à reta

A condição para que um ponto pertença a uma reta é que sua projeção pertença à projeção da reta e que sua cota seja a cota de um ponto da reta.



Exercícios

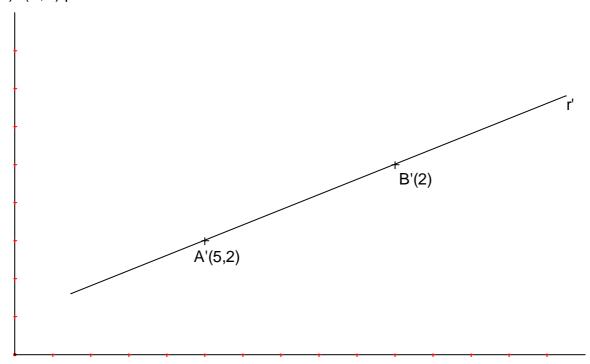
1) Obter o ponto P pertencente a uma reta dada r. Obter pontos de cotas inteiras da reta. u cm



- b) r(C, D), C(3, 3, 4) D(5, 7, 6) P(2, ?, ?)
- c) r(E, F), E(8, 6, -2) F(12, 2, 5) P(?, 3, ?)

2) Representar um ponto P da reta dada r sendo dada a sua cota p. u cm $\,$

a) r(A,B) p=4cm



b) r(C,D) C(4,5,4) D(8,2,2) e p=1cm

5. Posições relativas entre duas retas

<u>Vimos propriedade 2</u>: Se r//s então r'//s' ou r'≡s' ou são pontuais.

5.1. Condições de paralelismo

1º) Retas verticais

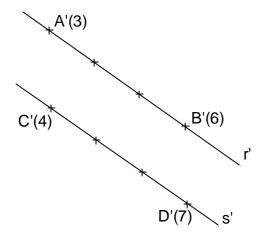
r e s verticais sempre serão paralelas ou coincidentes.

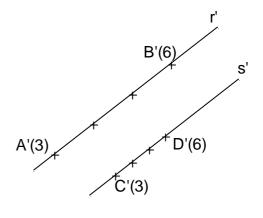
2º) Retas horizontais

r // s, ambas horizontais ⇔ r'//s'

3º) Retas quaisquer

$$r \: /\!/ \: s, \: ambas \: quaisquer \Leftrightarrow \begin{cases} r'/\!/ \: s' \: ou \: \: r' \equiv s' \: \: e \\ I_r = I_s \: \: e \\ g_r \: e \: g_s \: \: crescem \: no \: mesmo \: sentido \end{cases}$$



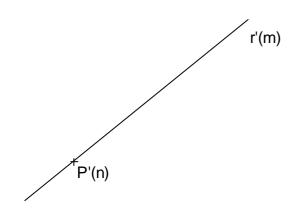


Exercício:

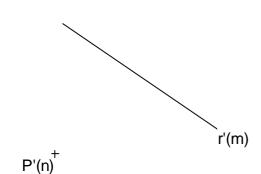
Representar a reta s pertencente a um ponto dado P e paralela a uma reta dada r.

a)

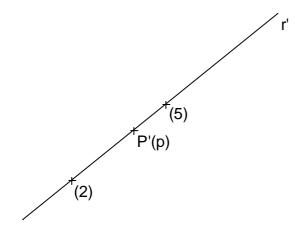
b)

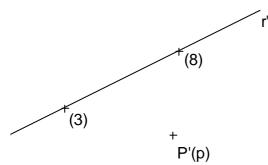


c)



d)



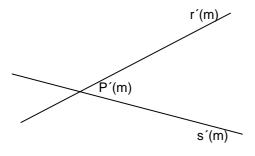


5.2. Condições de incidência

$$r \ \mathsf{pode} \ \mathsf{ser} \ \begin{cases} \mathsf{horizontal} \\ \mathsf{vertical} \\ \mathsf{qualquer} \end{cases} \ \ \mathsf{e} \ \mathsf{s} \ \mathsf{pode} \ \mathsf{ser} \ \begin{cases} \mathsf{horizontal} \\ \mathsf{vertical} \\ \mathsf{qualquer} \end{cases}$$

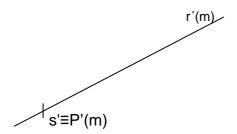
1º) r horizontal e s horizontal

r X s ⇔ Cotas iguais e projeções concorrentes.



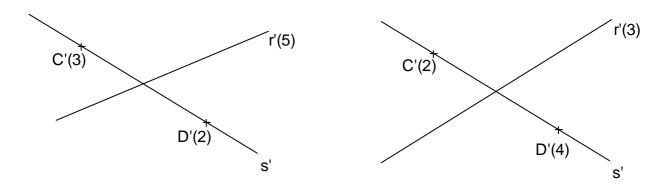
2º) r horizontal e s vertical

$$r X s \Leftrightarrow s' \in r'$$



3º) r horizontal e s qualquer

$$r X s \Leftrightarrow \begin{cases} -r' X s' \\ -(rs) \text{ tem mesma cota quando} \\ \text{considerado de r e de s} \end{cases}$$

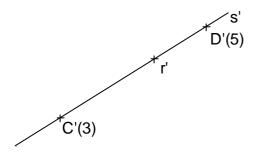


4º) r vertical e s vertical

Serão paralelas ou coincidentes.

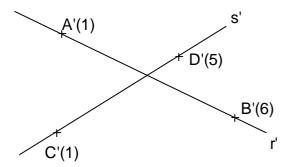
5º) r vertical e s qualquer

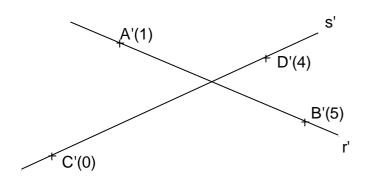
$$r X s \Leftrightarrow r' \in s'$$



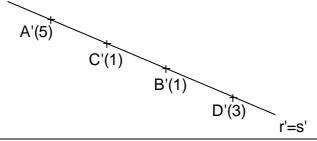
6°) <u>r qualquer e s qualquer</u>

a) Planos projetantes distintos e não paralelos - podem ser concorrentes ou reversas





b) Mesmo plano projetante – podem ser concorrentes ou paralelas $r(A,\,B),\,s(C,\,D).$



UFPR - Departamento de Expressão Gráfica - Professores: Deise M B Costa, Luzia V Souza e Paulo H Siqueira

6. Retas perpendiculares ou ortogonais

Relembrando a Propriedade:

Se (1)
$$r \perp s$$
 (ou $r \perp s$)
(2) $r // \pi'$ (ou $r \subset \pi'$) \Rightarrow (4) $r' \perp s'$
(3) $s \not\perp \pi'$

As recíprocas são válidas:

Se (2)
$$r /\!\!/ \pi'$$
 (ou $r \subset \pi'$)
 $(3) \ s \not \perp \pi'$ \Rightarrow (1) $r \perp s$ (ou $r \perp s$)
 $(4) \ r' \perp s'$

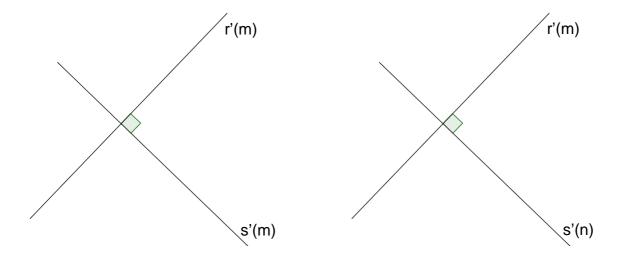
Se (1)
$$r \perp s$$
 (ou $r \perp s$) \Rightarrow (3) $s \not\perp \pi'$ (2) $r' \mid \pi'$ (ou $r \subset \pi'$)

Na projeção cilíndrica ortogonal tem-se que um ângulo não reto somente se projeta em VG quando dois lados forem paralelos ao plano de projeção. Porém, se o ângulo for reto, basta um só lado ser paralelo (ou estar contido) e o outro ser não perpendicular ao plano de projeção para que ele tenha projeção ortogonal em VG.

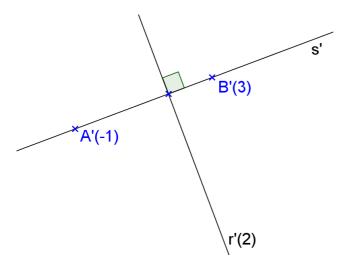
Sejam duas retas r e s então podemos ter:

1º) r horizontal e s horizontal

a) perpendiculares – ângulo reto e cotas iguais b) ortogonais – ângulo reto e cotas diferentes



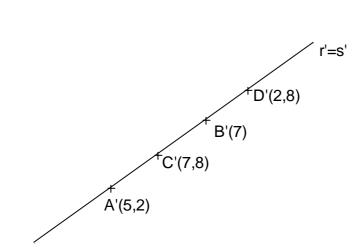
2º) r horizontal e s qualquer e pertencentes a planos projetantes distintos e não paralelos

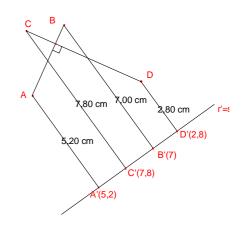


3º) r qualquer e s qualquer

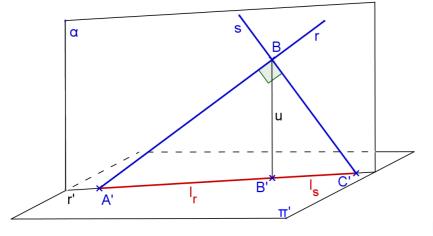
E pertencentes ao mesmo plano projetante ou a planos projetantes paralelos

Solução 1: rebater o plano projetante





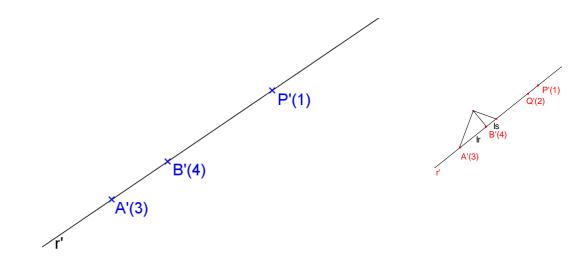
Solução 2: trabalhar com o intervalo (ou a equidistância) delas

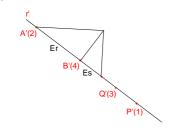


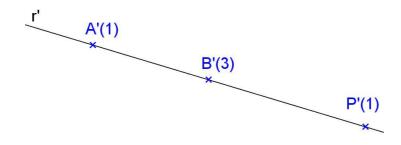
$$\begin{cases} r'//s' \text{ ou } r' \equiv s' \\ I_r = \frac{1}{I_s} \\ g_r \uparrow g_s \downarrow \end{cases}$$

Exercícios Propostos:

1) Representar a reta s pertencente ao ponto dado P e perpendicular a uma reta dada r(A,B).

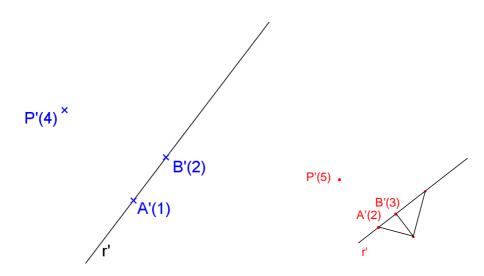




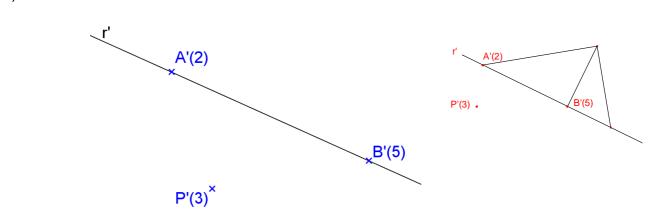


2) Representar a reta s pertencente ao ponto dado P e ortogonal a uma reta dada r(A,B), sabendo-se que seus planos projetantes são paralelos.

a)



b)



Capítulo IV – Representação do plano

1. Representação do plano

Um plano fica determinado por:

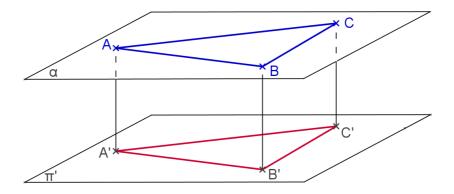
- Três pontos não colineares;
- Um ponto e uma reta que não se pertencem;
- Duas retas concorrentes ou paralelas.

2. Posições relativas de um plano em relação ao Plano de Projeção

$$\alpha \ e \ \pi' \ podem \ ser \ \begin{cases} paralelos \\ perpendiculares \ (projetantes) \\ oblíquos \end{cases}$$

2.1. Plano horizontal (ou de nível)

Espaço:



Épura:

+A'(m)

Propriedades:

- a) Cota constante
- b) Quantidade de pontos que determinam o plano: um ponto só
- c) Retas contidas no plano: horizontal
- d) VG: qualquer figura contida num plano de nível projeta-se em verdadeira grandeza
- e) Reta perpendicular: vertical
- f) Pertinência de ponto ao plano:
- g) traço:

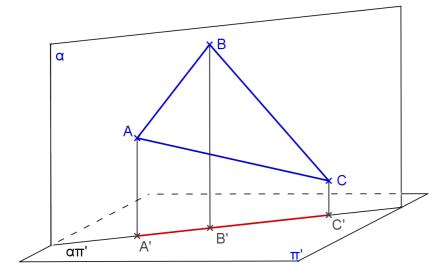
Exercícios

1. Represente a projeção cotada de uma pirâmide de base quadrada, V-ABCD regular, com a base contida no plano horizontal $\alpha(A,B)$ e altura de 4,3cm.

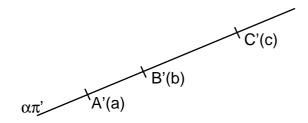
2. Represente a projeção cotada de uma pirâmide de base hexagonal, V-ABCDEF, com a base contida no plano horizontal $\alpha(A,B)$, dados os pontos A, B e V.

2.2. Plano vertical (ou projetante)

Espaço:



Épura:



Propriedades:

- a) Plano projetante: qualquer figura contida neste plano tem sua projeção reduzida a um segmento ou a uma reta. Assim, r pertence a $\alpha \Leftrightarrow$ r' pertence a $\alpha\pi'$.
- b) Quantidade de pontos que determinam o plano:
- c) Retas contidas no plano: verticais, horizontais e quaisquer. (As horizontais são paralelas entre si)
- d) VG: rebatimento do plano vertical
- e) Reta perpendicular: horizontal
- f) Pertinência de ponto ao plano:
- g) traço:

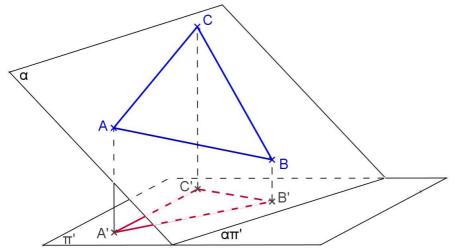
Exercício

Represente as projeções da pirâmide regular, de base quadrada, V-ABCD, com a base contida no plano vertical $\alpha(A,B)$ e altura de 4cm.

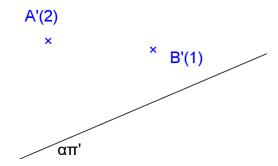
B'(2) X A'(1)

2.3. Plano qualquer

Espaço:



Épura:



Propriedades:

a) Quantidade de pontos que determinam o plano: 3

b) Retas contidas no plano: horizontais e quaisquer.

c) VG: Utiliza-se o triângulo do rebatimento

d) Reta perpendicular: qualquer

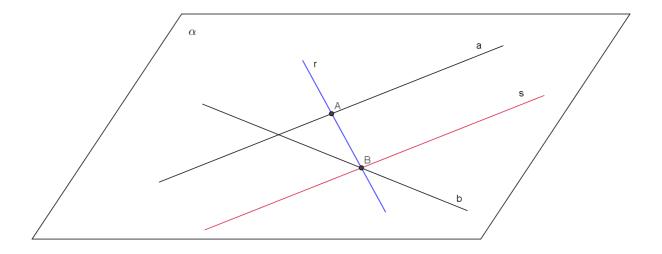
e) Pertinência de ponto ao plano: (a seguir)

f) traço:

3. Pertinência de ponto e reta a um plano qualquer

3.1. Pertinência de reta a plano qualquer

$$r \subset \alpha \iff \begin{cases} r \; X \, a, r \; X \, b \,, em \, pontos \, distintos, \, onde \, a, b \subset \alpha \\ r \; X \, a, r \, /\!\!/ \, b, \, onde \, a, b \subset \alpha \end{cases}$$

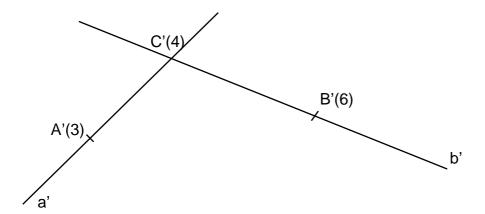


3.2. Pertinência de ponto a plano qualquer

$$P \in \alpha \Leftrightarrow P \in r e r \subset \alpha$$

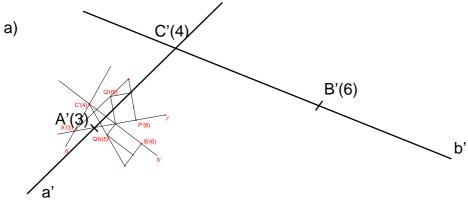
Exercícios:

- 1) Representar uma reta r pertencente ao plano dado $\alpha(a,b)$
- a) considerar rXa e r//b

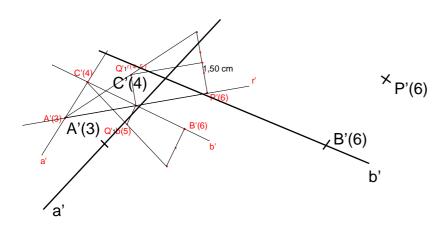


b) considerar rXa e rXb

2) Verificar se o ponto P pertence ao plano $\alpha(a,b)$



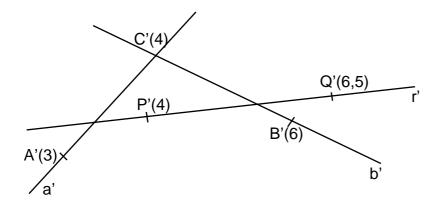
b)



3) Verificar se a reta dada r(P,Q) pertence ao plano dado $\alpha(a,b)$

a)

Resposta: pertence



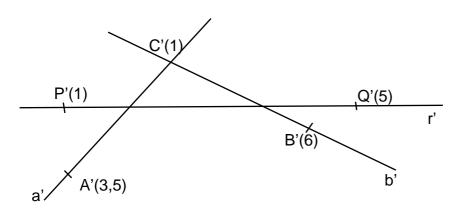
b) Resposta: não pertence

C'(4)

P'(4)

B'(6)

c) Resposta: não pertence



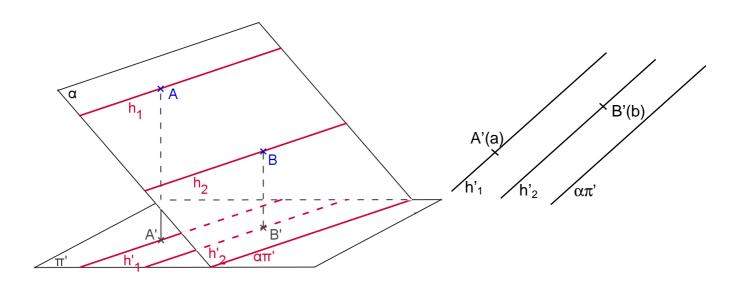
UFPR - Departamento de Expressão Gráfica - Professores: Deise M B Costa, Luzia V Souza e Paulo H Siqueira

3.3 Elementos de um plano qualquer

1º) Horizontais de um plano

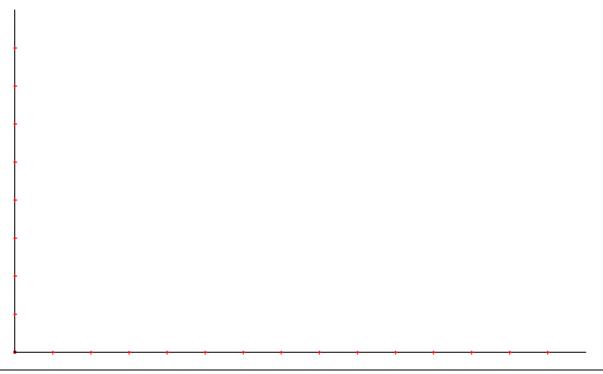
As horizontais de um plano qualquer são as retas de cota constante, ou seja, são as retas horizontais que estão contidas no plano.

Observação: As horizontais de um plano são sempre paralelas entre si



Exercícios:

1. Dado o plano $\alpha(A,B,C)$, encontrar a horizontal do plano conduzida pelo ponto B. Dados: A(60, 60, 50) B(10, 20, 25) C(80, 10, 10)



UFPR - Departamento de Expressão Gráfica - Professores: Deise M B Costa, Luzia V Souza e Paulo H Siqueira

2. Determinar o traço do plano $\alpha(A,B,C)$ sobre o plano π' $(\alpha\pi')$.

3. Representar a horizontal de α sabendo-se que a mesma tem uma cota c=1 dada.

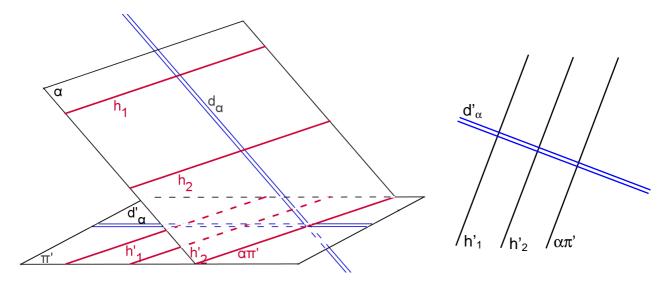
4. Obter a cota de um ponto P pertencente a um plano $\alpha(A,B,C)$ qualquer, sendo dada a sua projeção.

5. Dado o plano $\alpha(A,B,C)$ representar a reta r conduzida pelo ponto D do plano α e paralela à reta AC.

Dados: A(10, 40, 30) B(70, 60, 80) C(40, 10, 50) D(70, 40, ?)

2º) Reta de declive de um plano

<u>Definição</u>: a reta de declive de um plano é uma reta deste plano que é perpendicular às horizontais desse plano.



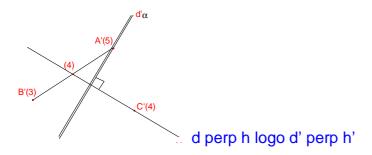
Propriedades:

- 1^a) Todas as retas de declive de α são paralelas entre si.
- 2^a) Graduar a reta de declive de um plano significa representar sua escala de declive.
- 3ª) Uma reta de declive de um plano qualquer é suficiente para representá-lo.

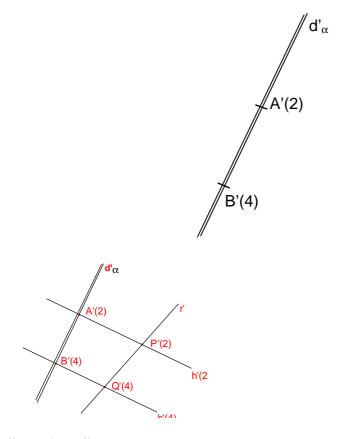
Definição: d é reta de declive de α em relação a β se d \perp ($\alpha\beta$) O ângulo entre d e β = ângulo entre α e β) Se β // π' então ($\alpha\beta$) // π' e como conseqüência d \perp h (as retas de declive serão perpendiculares as horizontais) e d' \perp h'

Exercícios:

1. Representar uma das retas de declive de um plano $\alpha(A,B,C)$ qualquer dado.



2. Dado o plano qualquer α por uma reta d $_{\alpha}$ de declive, representar outras retas deste plano. cabri: 4 Elem plano qualquer / 2 Declive / 2 alfa dado por d achar outra r



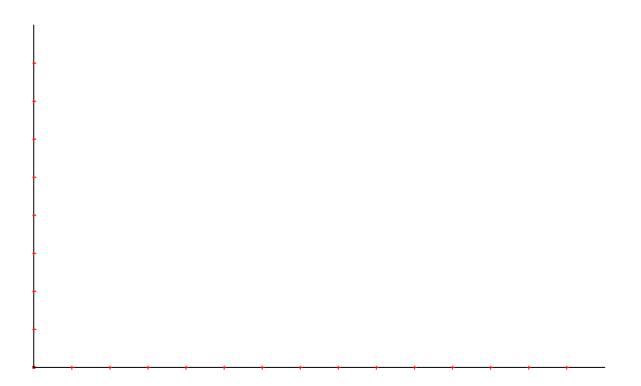
3º) Inclinação de um plano

Propriedades:

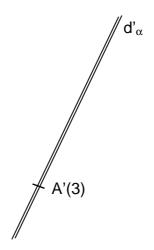
- 1^a) À inclinação de um plano é a inclinação de uma de suas retas de declive.
- 2^a) O ângulo entre α e π' é o ângulo formado por d e π' .

Exercícios:

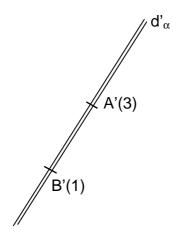
1. Encontrar o ângulo que o plano α (A, B, C) forma com o plano π' . Dados: A(10, 20, 15), B(40, 70, 50) C(70, 10, -10)

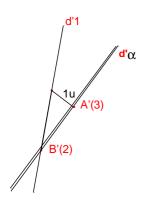


2. Representar o plano $\alpha(d)$ que forma 30º com o plano π' .

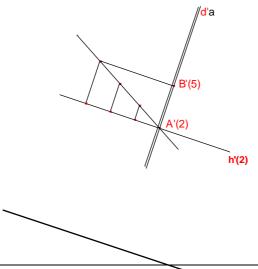


3. Encontrar o ângulo θ que o plano $\alpha(d_{\alpha})$ forma com π' .



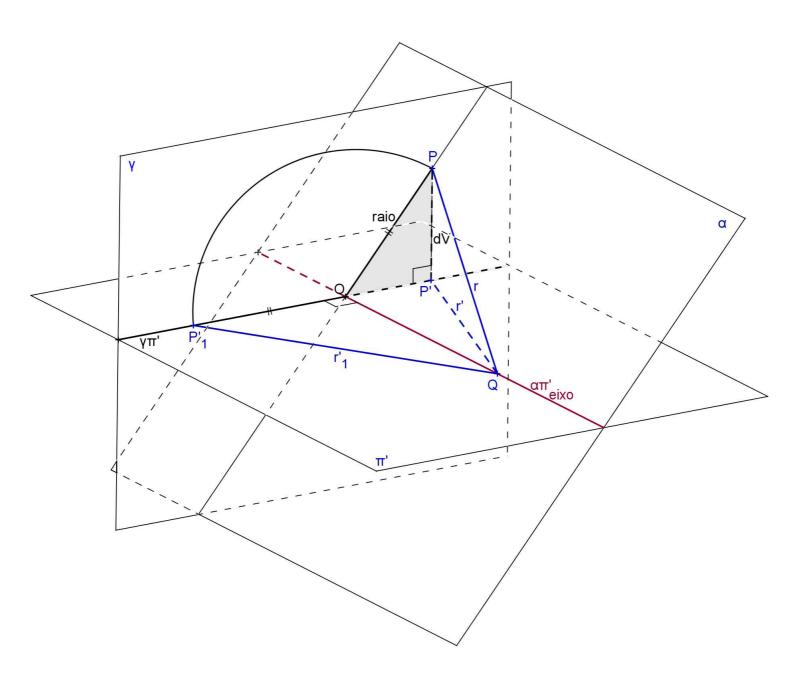


4. Representar um plano α que contenha a reta dada h e forme ângulo de 60° com π' .



4. Rebatimento do Plano Qualquer

Para determinar a verdadeira grandeza de uma figura contida num plano qualquer, devese efetuar o rebatimento do mesmo sobre o plano horizontal π' , ou sobre um outro plano paralelo à π' . O plano α é rotacionado em torno do eixo $\alpha\pi'$, que é o eixo de rotação do plano α até coincidir com o plano π' . O movimento do plano α em torno do eixo, descreve um arco de circunferência que está contido num plano perpendicular ao plano π' e, portanto a projeção deste arco será um segmento de reta contido no traço do plano π' sobre o plano π' . Para determinar a verdadeira grandeza deste arco, o plano vertical, π , que contém o arco é rebatido em torno de seu eixo π . O triângulo OPP' é o triângulo fundamental do rebatimento, sua verdadeira grandeza é representada pelo triângulo OPP'.



Exercícios:

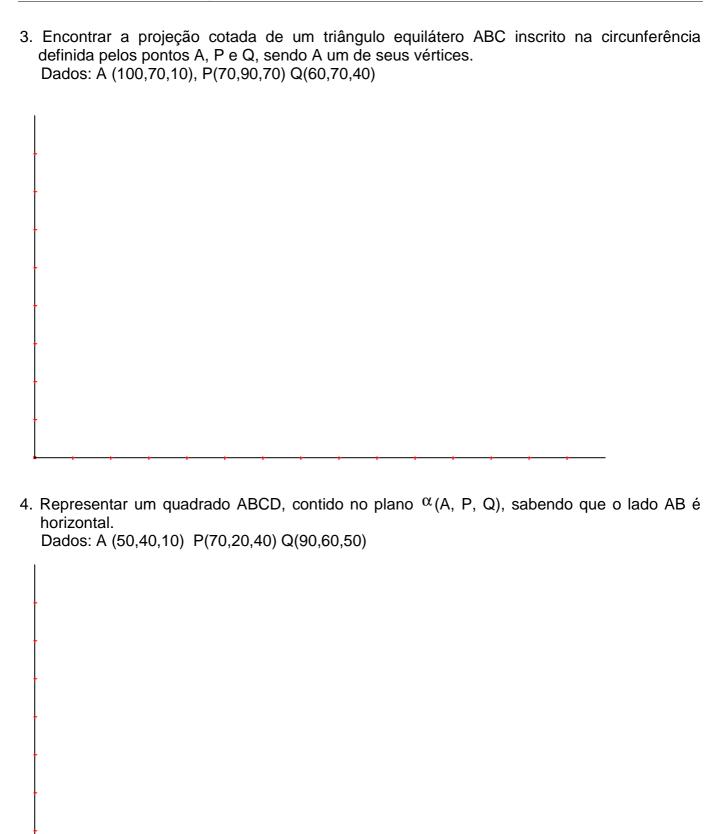
1. Dado o plano α (A, B, C), pede-se: encontrar a Verdadeira Grandeza (V.G.) do triângulo ABC.

Dados: A (30, 70, 0) B(80, 40, 0) C(80, 80, 40)



2. Encontrar a verdadeira grandeza do triângulo ABC.

Dados: A (50,30,30) B(20,60,70) C(80,70,10)



5. Posição relativa entre dois planos

Dados dois planos quaisquer α e β no espaço, eles podem ser:

 $\alpha \ e \ \beta \ podem \ ser \begin{cases} coincidentes \\ paralelos \\ secantes \ (\bot \ ou \ \angle) \end{cases}$

6.1. Condições de paralelismo de dois planos

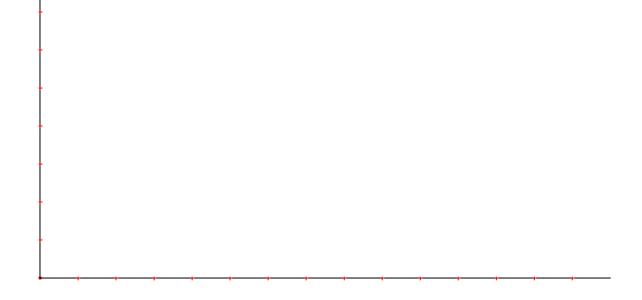
Sejam α e β dois planos distintos, então:

- a) Se α e β são horizontais, então α é paralelo à β ;
- b) Se α e β são verticais, então α é paralelo à β se $\alpha\pi'$ // $\beta\pi'$;
- c) Se α e β são planos quaisquer, então α é paralelo à β se suas retas de declive forem paralelas, ou seja, suas escalas de declive estão situadas em retas paralelas, seus intervalos são congruentes e suas cotas crescem no mesmo sentido sobre as escalas de declive.

Exercício: Conduzir pelo ponto P, um plano β paralelo ao plano α (A, B, C).

Dados: A(2, 3, 5) B(4, 5, 7) C(6, 1, 3) P(11, 4, 1)

Solução: Basta traçar pelo ponto P, retas paralelas à duas retas concorrentes de α .



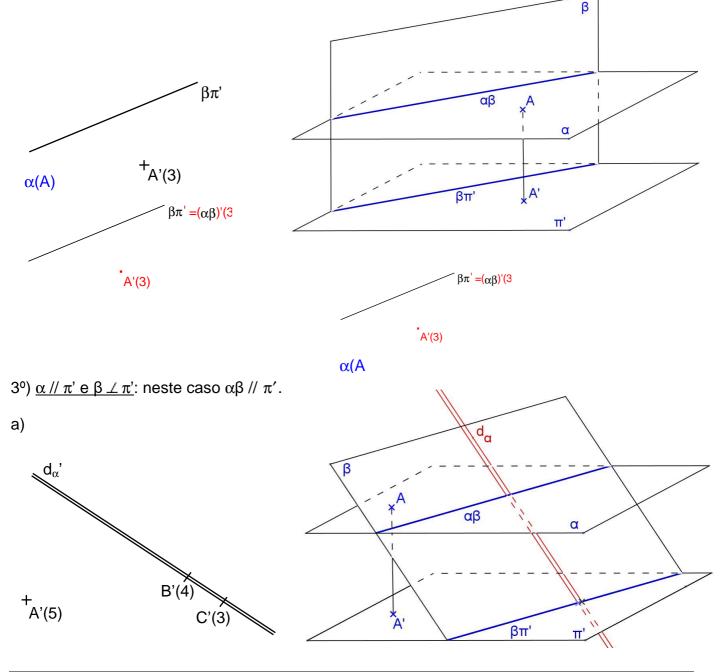
6.2. Planos Não paralelos: Interseção de planos

- Dois planos não paralelos α e β , são concorrentes quando possuem uma reta comum $(\alpha\beta)$.
- O traço de um plano horizontal α sobre um plano vertical β é uma reta horizontal $(\alpha\beta)$ que possui a mesma cota do plano horizontal α .
- Para determinar o traço entre dois planos quaisquer, utilizam-se planos auxiliares, geralmente horizontais, que facilitam a resolução do problema.

Pode-se considerar os seguintes casos:

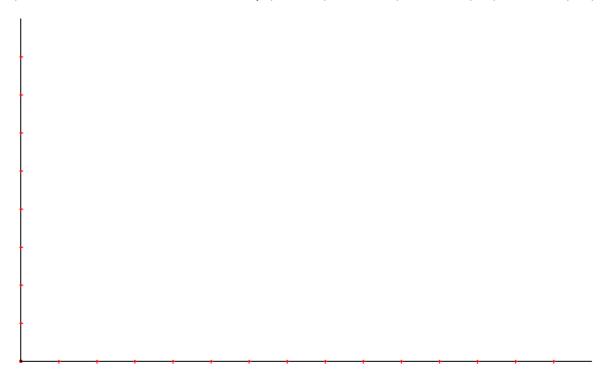
1°) $\alpha // \pi'$ e $\beta // \pi'$: neste caso o traço $(\alpha \beta)_{\infty}$ ou não existe.

 2°) $\alpha // \pi' \in \beta \perp \pi'$: neste caso $(\alpha \beta)' \equiv \beta \pi'$ onde $(\alpha \beta)'_{(\alpha)}$

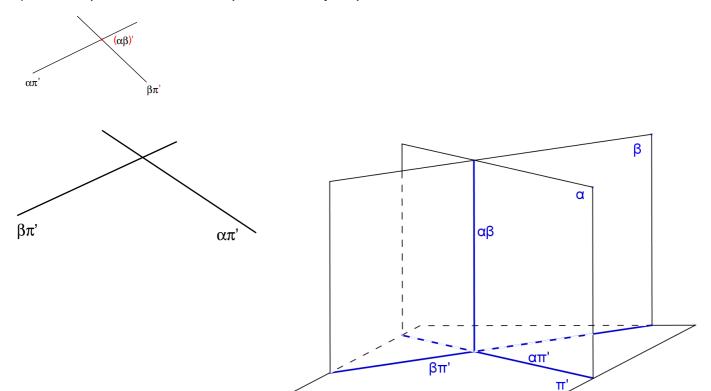


UFPR - Departamento de Expressão Gráfica - Professores: Deise M B Costa, Luzia V Souza e Paulo H Siqueira

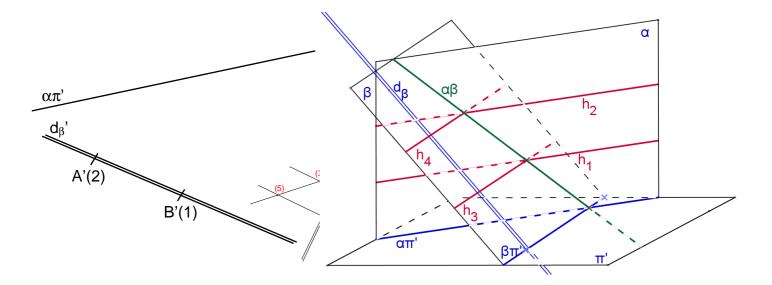
b) α é horizontal de cota c = 50, e β (A, B, C), onde: A(50, 10, 20) B(20, 50, 50) C(70, 30, 30)



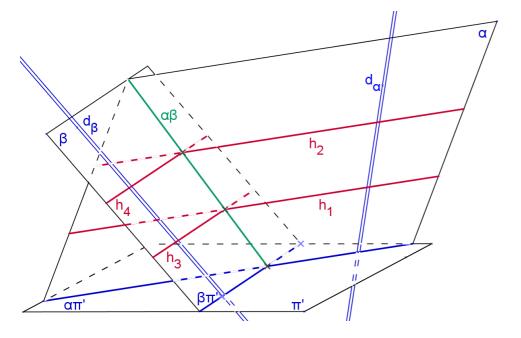
4°) $\alpha \perp \pi$ ' e $\beta \perp \pi$ ': neste caso $\alpha\beta \perp \pi$ ', ou seja, $\alpha\beta$ é uma reta vertical.



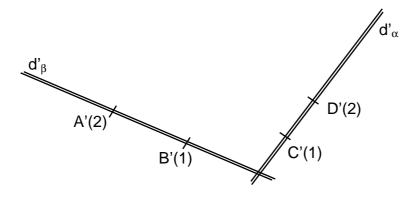
5°) $\alpha \perp \pi' \in \beta \perp \pi'$:



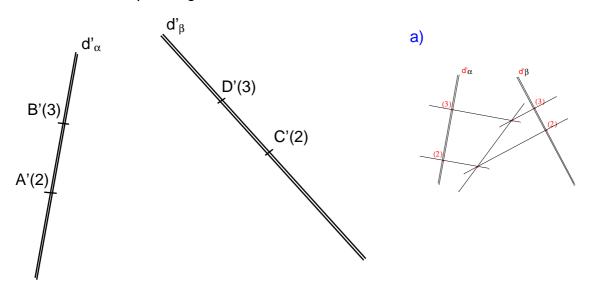
6°) $\underline{\alpha \perp \pi' \ e \ \beta \perp \pi'}$: Sejam $\alpha(d_{\alpha}) \ e \ \beta(d_{\beta})$

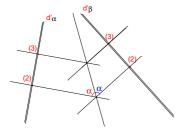


a) α e β são dados por suas retas de declive.



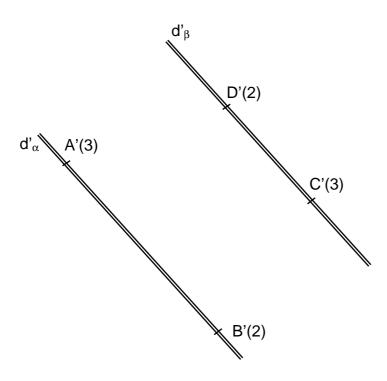
b) Os intervalos de α e β são iguais



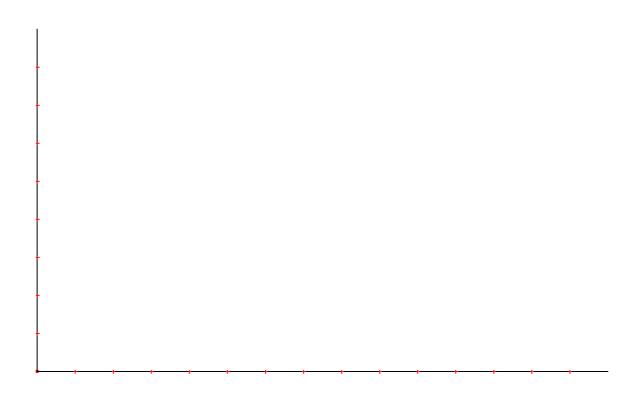


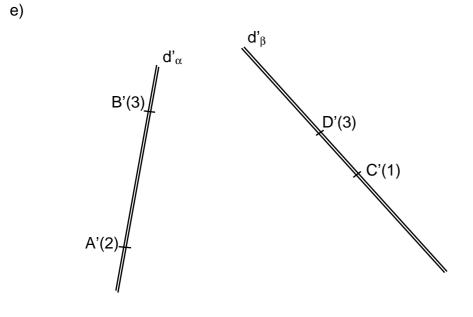
Observação: Quando dois planos estão igualmente inclinados então eles se cortam segundo uma reta que é a bissetriz do ângulo formado pelas suas horizontais.

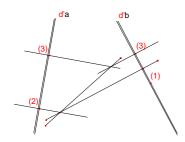
c) As projeções de d_{α} e d_{β} são paralelas.



d) α (A, B, C) e β (D, E, F), onde: A(0, 40, 70) B(80, 80, 30) C(50, 0, 10) D(20, 90, 20) E(-10, 10 40) F(70, 20, 30)







f) $\alpha(d_{\alpha})$, $\beta(d_{\beta})$, $d_{\alpha}(A,B)$, d_{β} (C,D) Dados: A(5,7,6) B(2,3,1) C(7,6,4) D(9,4,2)

g) $\alpha(d_{\alpha})$, $\beta(d_{\beta})$, $d_{\alpha}(A,B)$, d_{β} (C,D) Dados: A(3,4,3) B(2,7,5) C(6,2,7) D(10,6,2)

6. Posições relativas entre retas e planos

De acordo com sua posição no espaço, um plano e uma reta podem ser: paralelos, concorrentes ou a reta pode estar contida no plano.

6.1 Reta Paralela a Plano

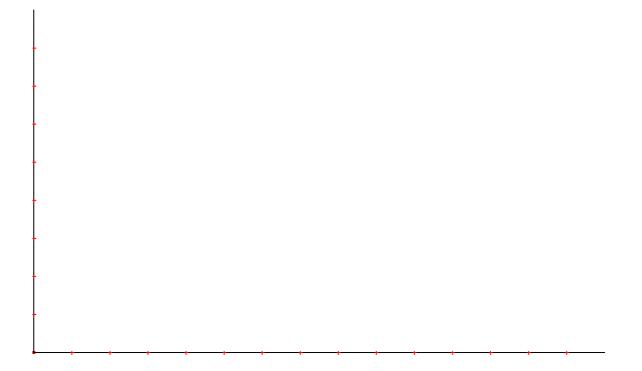
Uma reta r é paralela a um plano α quando é paralela a uma das retas desse plano.

Se o plano α for vertical, a reta r será paralela ao plano α se sua projeção r' for paralela ao traço $\alpha\pi'$.

Se o plano α for horizontal, a reta r é paralela a α quando for paralela a uma das horizontais de α e possuir cota diferente da cota do plano.

Exercício: Conduzir pelo ponto P, uma reta r, paralela ao plano α , definido pelos pontos A, B e C.

Dados: A(10, 10, 20) B(70, 30, 50) C(40, 80, -10) P(60, 10, 30).



6.2 Reta concorrente com plano

Uma reta concorrente a um plano pode ser:

- · Perpendicular ao plano;
- Oblíqua ao plano.

6.3 Reta Oblíqua ao plano

Definição: Uma reta é oblíqua a um plano, quando forma com o mesmo, ângulo diferente de 0° ou 90°.

6.4 Reta perpendicular a plano

• Se r é uma reta vertical, então qualquer plano α horizontal é perpendicular à reta;

Exercício: Conduzir pelo ponto P(100, 30, 40) uma reta r, perpendicular ao plano α (A, B, C).

- Se r é uma reta horizontal, então um plano α , perpendicular a esta reta, é vertical e $\alpha \pi'$ é perpendicular à r';
- Se a reta r é qualquer, então um plano α , perpendicular à reta r, é qualquer e é perpendicular às retas de declive do plano α . Para que a reta r seja perpendicular ao plano α é necessário e suficiente que suas escalas de declive estejam situadas em retas paralelas, que seus intervalos sejam inversos um do outro e que as graduações das escalas de declive cresçam em sentidos opostos.

Onde A(0, 70, 10), B(80, 80, 50) e C(70, 0, 25)

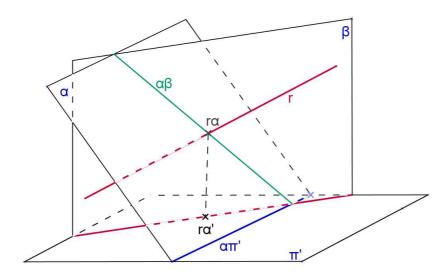
7. Problemas Fundamentais de Posição

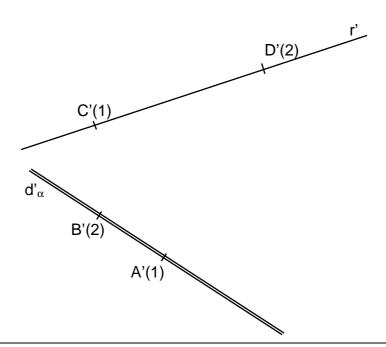
Os problemas fundamentais de posição são:

- O ponto definido por uma reta e um plano;
- A reta definida por dois pontos;
- O plano definido por um ponto e uma reta;
- A reta definida por dois planos.

7.1 O ponto definido por uma reta e um plano

Um ponto pode ser definido pela interseção de uma reta e um plano não paralelos. Para determinar o traço de uma reta r sobre um plano α , considera-se um plano auxiliar β pertencente à reta r, determina-se então a reta $\alpha\beta$, interseção do plano α com o plano β . O traço da reta r sobre a reta $\alpha\beta$ é o ponto $(r\alpha\beta)$, comum à reta r e ao plano α . Em geral o plano auxiliar β é o plano projetante da reta r.

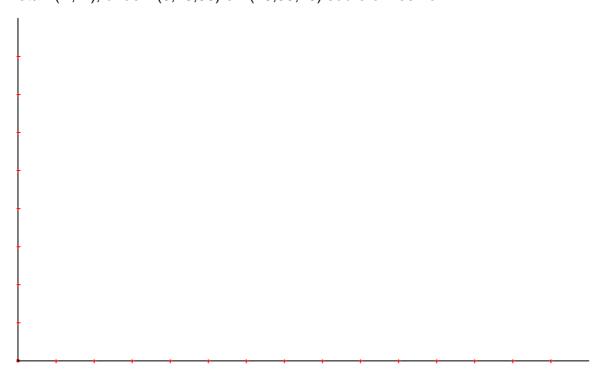




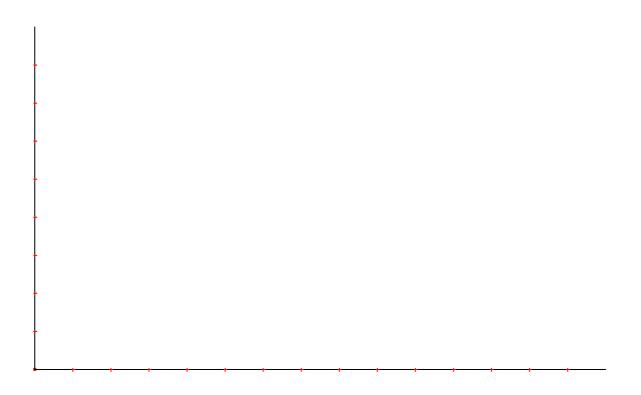
UFPR - Departamento de Expressão Gráfica - Professores: Deise M B Costa, Luzia V Souza e Paulo H Siqueira

Exercícios:

1) Dado o plano α pelos pontos A(0,60,20), B(30,0,30) e C(70,50,70), determinar o traço da reta r (D, E), onde D(0,40,90) e E(70,30,10) sobre o mesmo.



2) Dado o plano α , por sua reta de declive d(A,B), determinar o traço da reta r(C, D) sobre o mesmo. Onde A(10,10,10), B(40,30,50), C(70,10,20) e D(50,20,40).



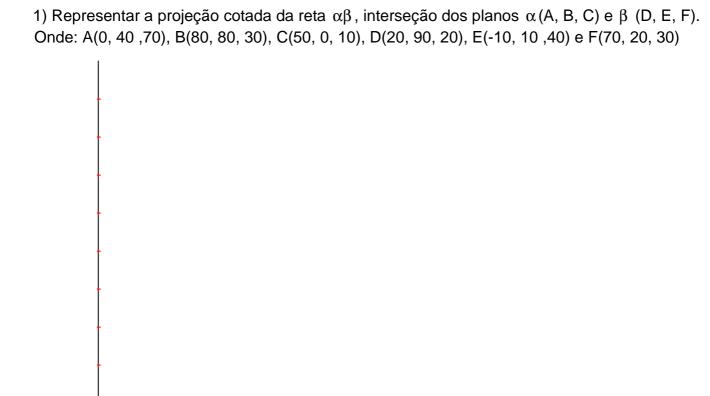
7.2 A reta definida por dois planos

Uma reta pode ser definida por dois planos.

<u>Problema</u>: Sejam os planos α e β distintos, determinar a reta $\alpha\beta$.

- a) Se os planos α e β são verticais e não paralelos, então a reta $\alpha\beta$ é uma reta vertical e $(\alpha\beta)$ ' é a interseção de $\alpha\pi'$ com $\beta\pi'$.
- b) Se o plano α é vertical e o plano β é qualquer, a reta $\alpha\beta$ é uma reta qualquer e $(\alpha\beta)' \equiv \alpha\pi'$.
- c) Se os planos α e β são quaisquer, a reta $\alpha\beta$ é uma reta qualquer.

Exercícios:



2) Representar a projeção cotada da reta $\alpha\beta$, interseção dos planos α (d $_{\alpha}$) e β (d $_{\beta}$). Onde: A(20, 20, 40), B(40, 50, 70), C(70, 10, 10), D(50, 40, 50)