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Abstract: Convolutional neural networks have a significant role in image 

classification. However, finding the best set of hyperparameters is a challenging task. 

In this paper, we evaluated the impact of a convolution layer on other convolution 

layers over a variety of hyperparameters by the outcome of Taguchi’s experimental 

table and graphical resources. As a result, the second and third convolutional layers 

have more interactions than other layers playing an essential role in the network. 
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INTRODUCTION 

Convolutional neural networks (CNNs) are one of the 

most fundamental artificial neural networks (ANNs) 

currently used. Since their fundamental ideas - which 

appeared in research on brain functions (Hubel and 

Wiesel, 1959, 1962, 1968), then their first application 

in digit recognition (LeCun et al., 1989) - CNNs are 

important because of their ability to deal with a large 

amount of information and solve complex problems 

that classic ANNs do not solve. 

Especially for image classification, CNNs were a 

breakthrough in the field of ANNs. The fast 

development took place after AlexNet (Krizhevsky et 

al., 2017) on Image Large Scale Visual Recognition 

Challenge (ILSVRC) – with the first deep neural 

network (DNN), which achieved an error rate below 

16% on the ImageNet dataset (Jia Deng et al., 2009). 

Since then, the architecture of CNN has grown over 

time, becoming deeper with ZFNet (Zeiler and 

Fergus, 2013), VGGNet (Simonyan and Zisserman, 

2014), and even reaching a milestone of recognition 

better than humans with ResNet-152 (He et al., 

2015a). Throughout this progress, CNNs have 

evolved for more complex architectures and different 

tasks, such as medical issues (Erdenebayar et al., 

2019; Li et al., 2014), object detection (Girshick, 

2015; Girshick et al., 2014; Ren et al., 2017), face 

recognition (Taigman et al., 2014), fake news 

detection (Monti et al., 2019), wind forecasting 

(Harbola and Coors, 2019) and many other 

applications. 

 

Despite remarkable achievements, there are still 

CNN optimizations to be done. This paper aimed to 

understand how one convolution layer affects other 

convolution layers and how the hyperparameters 

affect the outcome of CNN. For this purpose, the 

following hyperparameters were studied: Filter size, 

Number of filters, Learning rate, Momentum, Batch 

size, and Activation function. The experimental 

methodology of Taguchi was used, which enables 

finding the best combination of hyperparameters in a 

faster way than the traditional full factorial 

experiments. The CNN was evaluated by observing 

the network’s accuracy in two datasets and four 

architectures. The results were analyzed using the 

output of the design of experiment (DOE), main 

effects plots, interactions plots, analysis of mean 

(ANOM), and heatmaps. 

In this way, our paper can be summarized in the 

following key contributions: 

• The use of an experimental method for 
engineering in CNNs. 

• An interpretation of the network’s 
hyperparameters by graphical techniques. 

• A new analysis for CNNs, looking at the 
effects between the hidden layers. 

RELATED RESEARCH 

An essential aspect of CNNs is the ability to extract 

small features from input and propagate them toward 

the deeper layers; thus, the extracted features’ 

complexity increases with the network’s depth. For 

instance, in face detection (Albawi et al., 2017), basic 

characteristics, such as straight lines, can be detected 
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in the first layers, whereas the deeper layers 

recognize more complex forms such as an eye. Two 

aspects affect network performance in this process: 

the set of hyperparameters and the architecture. A 

network can extract the features from input and 

generalize the dataset properly depending on the 

settings chosen for both aspects. 

The relation among depth, the necessity of fewer or 

more nodes in a Fully connected (FC) layer, and their 

influence on network errors were explored by Basha 

et al. (2019) using CIFAR-10 and CIFAR-100 

(Krizhevsky, 2009), Tiny ImageNet (Wu et al., 2017) 

and CRCHistoPhenotypes (Sirinukunwattana et al., 

2016). The results presented that shallow CNNs 

require more nodes in FC layers than deeper CNNs, 

and wider datasets need more FC layers and are 

better with shallow architecture; on the other hand, 

deeper datasets are better with deep architectures and 

need fewer FC layers. 

One of the hyperparameters related to the 

performance of CNNs is the Batch size. Using The 

Mixed National Institute of Standards and 

Technology (MNIST) (LeCun Yann et al., 2012) and 

CIFAR-10 datasets (Krizhevsky, 2009), the research 

of Radiuk (2018) was based on well-known 

architectures of the literature - such as Lanet-5 

(Lecun et al., 1998) - defined a range of values for 

Batch size to evaluate the influence on accuracy. As 

a result, the accuracy increases as the Batch size 

grows. 

Regarding the Activation function, there are many 

options: Linear, Sigmoidal, Tanh, ReLU (Nair and 

Hinton, 2010), PReLU (He et al., 2015b), Leaky 

ReLU (Maas et al., 2013), and ELU (Clevert et al., 

2016). According to Li et al. (2021), the Linear 

activation functions are the worst possibility. The 

accuracy of the ELU function is slightly better than 

that of ReLU, Leaky ReLU, and PReLU, but the 

functions can present different behaviors depending 

on the dataset used. Using other CNNs, Xu et al. 

(2015) found that the PReLU loss is always the 

lowest and introduced the RReLU function, an 

efficient way to combat overfitting. 

To construct a better architecture, Maitra et al. (2018) 

studied the impact of Filter size, Number of filters, 

and Activation functions for the Diabetic 

Retinopathy dataset (Trivino et al., 2018). They 

showed that a small number of filters performed 

better than a large number of them, and filters of 

small size produced higher accuracy. Additionally, 

Activation function does not have a significant 

impact on the network. On the other hand, the work 

of Khanday and Dadvandipour (2020) using the 

MNIST dataset and Ahmed and Karim (2020) using 

the KTH dataset (Schuldt et al., 2004) reach better 

performance with a higher number of filters in 

comparison to a small number of filters but agree that 

smaller filters are better than larger ones. 

This way, hyperparameters are a fundamental part of 

any ANN since they guide the network answer and 

the learning process through the training step. 

However, finding the best set of hyperparameters is 

quite challenging. For example, if we have 5 

hyperparameters, each with 10 values, the running 

procedure must be executed 100 thousand times to 

find an appropriate set of values (Aggarwal, 2018). 

Moreover, as mentioned in Maitra et al. (2018), 

Khanday and Dadvandipour (2020), and Ahmed and 

Karim (2020), when the hyperparameters increase, 

the runtime also grows; depending on the settings 

chosen, a deep architecture or an extensive range of 

hyperparameters, sometimes it is impossible to run 

all trials because of the amount of time involved in 

training. 

Many methods have been developed to find the best 

set of hyperparameters for a CNN. The most 

common are greedy search and random search. In 

addition, some methods can use other kinds of 

algorithms to help these search, such as genetic 

algorithms (Loussaief and Abdelkrim, 2018; Aszemi 

and Dominic, 2019), evolutionary algorithms 

Bochinski et al. (2017), metaheuristics of swarms 

(Bacanin et al., 2020;  Serizawa and Fujita, 2020), 

deterministic RBF surrogates (Ilievski et al., 2017) or 

even mesh adaptive direct search (Lakhmiri et al., 

2019). 

One greedy method is to test all possibilities for a 

determined set of hyperparameters, but it can be 

impossible due to the time needed. However, the 

experimental tables of Taguchi (Zhang et al., 2020) 

can reduce the number of runs to find the best 

hyperparameter combination. This robust method 

uses orthogonal arrays (Taguchi and Konishi, 1987) 

and is widely used in other applications (Lamy and 

Chaves Neto, 2017; Miloradović et al., 2019; 

Tsiolikas et al., 2017) and can also be helpful in 

CNNs (Akbarzadeh et al., 2019). 

 

MATERIALS AND METHODS 

Once the CNN is built by layers, each layer has the 

decode function according to which part that layer 

belongs and propagates the previous result to the 

consecutive layers. Therefore, a technique that 

visualizes the whole neural network and how the 
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layers interact can provide powerful insights. This 

section provides the proposed optimization method, 

describes the architectures of CNNs, the orthogonal 

arrays for DOE, and the interpretation method for the 

outcome of the experimental design of Taguchi. 

Architectures 

Four different architectures were chosen, as shown in 

Figure 1. All architectures dismiss a high-end CPU; 

since the objective is the CNN optimization, 

evaluating the method in an award-winning CNN 

architecture - which is already efficient and well-

optimized – does not match to desired results. 

 

Fig. 1. An overview of all architectures. 

Legend: The architectures use convolutional layers 

(conv), Activation functions (Activation), Max 

pooling layers (Maxpool), Fully connected layers 

(FC), and a SoftMax layer (SoftMax). (a) 

Architecture of Model 1. (b) Architecture of Model 

2. (c) Architecture of Model 3. (d) Architecture of 

Model 4. 

The first model is based on LaNet-5 (Lecun et al., 

1998); the architecture uses a Max pooling layer after 

the convolutional layer, except for the last 

convolution layer, which has an FC layer after it. 

Model 2 is an expansion of Model 1 by adding one 

convolutional layer, following the same pattern of 

layers. Model 3 explores the structure of more than 

one convolutional layer in sequence, i.e., the Max 

pooling layer comes after two convolutional layers. 

The last, Model 4, follows the same pattern as Model 

3 but has double the convolutional layers. All models 

at the end have a SoftMax Function. 

Design of Experiment 

The purpose of DOE is to investigate the significance 

of the factors and explain the relationship between 

them. In other words, it determines the influence of 

each factor on the response and evaluates different 

experimental configurations. For CNN, the factors 

are the hyperparameters, and the levels are their 

different values. 

The DOE of Taguchi is less expensive than the full 

factorial design because it uses orthogonal arrays, 

i.e., the columns – the factors – are independent and 

balanced for the levels. These properties lead to only 

a fraction of the runs without reducing effectiveness 

(Taguchi et al., 2004). However, the computational 

cost must be considered when applying Taguchi’s 

design for the CNN since the cost increases with the 

number of factors and levels. 

The analyzed factors in this paper were Filter size 

(Fs), Number of filters (Nf), Learning rate, 

Momentum, Batch size, and Activation function. Fs 

varies from 3x3 to 7x7, while the number of filters 

ranges from 16 to 1,024, depending on the model. 

Two values were set for Learning rate (0.001 and 

0.0001) and Momentum (0.8 and 0.9). For Batch 

size, values of 128 or 256 were set. Finally, 

Activation function was chosen as ReLU and Tanh. 

The levels of factors used in each experimental case 

are described in Table I. The hyperparameters related 

to each layer are Fs i and Nf i, where i is the number 

of convolutional layers. For practical reasons, the 

hyperparameters: Learning rate, Momentum, Batch 

size, and Activation function are sometimes called 

method hyperparameters. 

All experimental tables1 (Kacker et al., 1991) have 2 

levels for each factor - Model 1 uses the L12 

orthogonal array, Model 2 and Model 3 use the L16, 

and Model 4 uses the L32. 

 

Analysis 

ANOM is a statistical technique used to classify 

DOE factors. This resource, through the difference of 

mean obtained for each factor-level analyzed, ranks 

the factors in order of importance; a higher difference 

between levels has high relevance, and a factor that 

presents no difference between your levels is not 

significant. This way, it is possible to choose the 

hyperparameter that has more impact on the 

experiment. The main effect plot represents the 

factors and the differences between their levels. 

 

1 All experimental tables and algorithms can be found at 

https://github.com/lamyluc/Impact-among-Convolution-Layers.git. 
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TABLE I.  FACTOR-LEVEL OF HYPERPARAMETERS FOR 

MODELS 1 TO 4 

Hyper- 

parameter 

Model 1 Model 2 and 3 Model 4 

Level 1 Level 2 Level 1 Level 2 Level 1 Level 2 

Fs 1 3x3 7x7 3x3 7x7 3x3 7x7 

Nf 1 16 32 32 64 32 128 

Fs 2 3x3 7x7 3x3 7x7 3x3 7x7 

Nf 2 32 64 64 128 32 128 

Fs 3 3x3 7x7 3x3 7x7 3x3 7x7 

Nf 3 64 128 128 256 128 256 

Fs 4   3x3 7x7 3x3 7x7 

Nf 4     128 256 

Fs 5     3x3 7x7 

Nf 5     256 512 

Fs 6     3x3 7x7 

Nf 6     256 512 

Fs 7     3x3 7x7 

Nf 7     512 1,024 

Fs 8     3x3 7x7 

Nf 8     512 1,024 

Learning 

rate 
0.001 0.0001 0.001 0.0001 0.001 0.0001 

Momentum 0.8 0.9 0.8 0.9 0.8 0.9 

Batch size 128 256 128 256 128 256 

Activation 

function 
ReLU Tanh ReLU Tanh ReLU Tanh 

 

It is usual to analyze one factor alone, but it is also 

possible to study the interaction between the factors. 

As Fowlkes and Creveling (1995) and Taguchi et al. 

(2004) describe, there can be 3 types of interaction: 

strong, mild, and no interaction. Any kind of 

interaction is hard to classify – mainly mild 

interactions - and it is done visually with an 

interaction plot and numerically with the same 

procedure of ANOM. A small difference in ANOM, 

i.e., a slight inclination between factors, can be 

interpreted as greater or less importance guiding a 

misleading evaluation. 

To better understand interactions and measure them 

precisely, the following procedure was made: first, an 

interaction graph was plotted, followed by ANOM of 

the same interactions without a hierarchy of 

importance; lastly, the previous numerical results 

were plotted as a heatmap. 

The transformation of the interaction plot in a 

heatmap (Figure 2) takes an overview of all 

interactions, removes the interpretation directed to 

only one interaction, allows an easier interpretation, 

and eliminates the deceiving classifications where 

slight differences exist from each other, leading to 

the understanding of the whole network. 

 

 

 

Figure. 2. Transformation of the interaction plot (left) into a heatmap (right). 

Legend: Left: left and right axis are accuracy of CNN; top and bottom axis are column factors levels. Right: 

Strong interactions are in dark blue, while mild interactions are in light blue; the left and bottom axis are the 

factors; the right bar is the intensity of the interaction. 
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Datasets and System Specification 

The CIFAR-10 (Krizhevsky, 2009) and MNIST 

(LeCun Yann et al., 2012) datasets were chosen for 

this paper. These datasets are globally applied for 

evaluating different machine learning techniques, and 

they are simple datasets, allowing easy reproduction 

of the results. 

The MNIST dataset is a black and white handwritten 

digit with a set of 60 thousand examples for training 

and 10 thousand examples for testing. The set 

comprises 28x28-pixel images, and the classes are 

numbers from 0 to 9 with their respective labels. 

CIFAR-10 is a color dataset with 60 thousand 

images, each measuring 32x32 pixels, separable into 

10 different categories where each class has 6 

thousand images; its standard form is 50 thousand 

images for training and 10 thousand for testing. 

All experiments were implemented in a single 

NVIDIA GeForce® RTX 2070 SUPER (8 GB) GPU 

– algorithm available1. All models were trained with 

stochastic gradient descent (SGD) with Momentum 

by 30 epochs for the MNIST dataset and 100 epochs 

for the CIFAR-10 dataset. Training used early-stop 

of 5 epochs. 

RESULTS AND DISCUSSION 

The analysis is performed by the output of the 

experimental table and the heatmaps. All results1 

were measured in training accuracy, training loss, 

validation accuracy, and validation loss. The 

following results are based only on validation 

accuracy. The graphs have been suppressed, and the 

results are described below. 

For MNIST dataset results1, validation accuracy on 

the experimental table can change between 9.8% and 

98.89%. Models 1 and 2 present a significant 

variance in the results; half of the running reaches 

over 85% accuracy, and the better results have the 

Learning rate set to 0.001 and Tanh. Model 3 

presents the highest validation accuracy and is the 

model that shows the lowest variance in results; 

additionally, it has higher outputs with Learning rate 

of 0.001. Model 4 can perform better with the same 

hyperparameters as Models 1 and 2. The higher 

accuracies of Models 2, 3, and 4 have Fs 7x7, and Nf 

increases, or remains the same, in the following 

layer. 

The experimental result1 of the CIFAR-10 dataset 

shows that the top results on Models 2, 3, and 4 

present better output with ReLU function. For 

Models 3 and 4, the worst result used a Learning rate 

of 0.0001 and Tanh; on the other hand, the best 

results of Model 2 used Learning rate of 0.0001. In 

the same way as the MNIST dataset, Nf must 

increase or remain the same in the following layer for 

a better CNN output. 

The main effect plot1 shows a network overview 

pointing to the best level of performance. The results 

are summarized in Table II; the best value for each 

hyperparameter is described from the first to the last 

layer. In general, Models 1 and 2 obtained a higher 

mean validation accuracy using Tanh and a Learning 

rate of 0.0001, while Models 3 and 4 performed 

better with the ReLU Activation function and 

Learning rate of 0.001. In addition, the MNIST 

dataset answered better with Fs 7x7, except for the 

last layers of Model 4. 

TABLE II.  BEST FACTOR LEVEL FOR EACH 

MODEL/DATASET BY LAYER. 

  MNIST CIFAR-10 

Model 

1 

Fs 7, 7, 7 3, 3, 7 

Nf 16, 32, 128 32, 64, 64 

Learning rate 0.0001 0.0001 
Momentum 0.8 0.9 

Batch Size 128 128 
Activation 

Function 
Tanh Tanh 

Model 
2 

Fs 7, 7, 7, 7 3, 3, 7, 3 

Nf 
32, 64, 128, 

128 

64, 128, 128, 

512 

Learning rate 0.0001 0.0001 
Momentum 0.8 0.8 

Batch Size 256 128 
Activation 

Function 
Tanh Tanh 

Model 

3 

Fs 7, 7, 7, 7 3, 3, 7, 3 

Nf 
64, 128, 256, 

256 

64, 128, 128, 

256 

Learning rate 0.001 0.001 

Momentum 0.8 0.8 

Batch Size 128 128 
Activation 

Function 
ReLU ReLU 

Model 
4 

Fs 
7, 7, 7, 7, 7, 7, 
3, 3 

7, 3, 7, 7, 7, 7, 
3, 3 

Nf 

128, 128, 128, 

128, 256, 256 
1025, 512 

128, 128, 128, 

128, 256, 512, 
1024, 512 

Learning rate 0.001 0.001 

Momentum 0.9 0.9 

Batch Size 128 128 

Activation 

Function 
ReLU ReLU 

 

Meanwhile, the CIFAR-10 dataset presented higher 

accuracy using 3x3 Fs for Models 1, 2, and 3. Model 

4 showed better results, with 7x7 Fs. Batch size of 

128 was the best in almost all models and datasets — 

the exception was Model 2 for the MNIST dataset. 

The best Momentum value for Models 2 and 3 is 0.8 

for both datasets; in the same way, Model 4 for a 

value of 0.9; Model 1 performed differently over the 

datasets. The Nf does not show a possible pattern. 

The ANOM results are summarized in Table III. For 

the common hyperparameters to all models, it is 

noticed that Activation function is the most important 

factor for more than half of the models; when it is not 

the most relevant, it is in the top three. The Learning 

rate is in the following position of importance, except 
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for Model 1. Batch size also proved to be an 

important factor but with less impact than Activation 

function and Learning rate. Analyzing only Nf and 

Fs, Fs 3 is the most significant hyperparameter in the 

networks, followed by Nf 1 and Fs2. The other 

hyperparameters show a minor influence when 

compared to other factors. 

Observing the interactions between Nf and Nf, 

heatmaps1 show that Nf 2 has more interactions than 

other layers and interacts mainly with Nf 3 and 4; Nf 

1 has fewer interactions than the other Nfs. For the 

interactions Fs by Fs, Fs 1 is more interactive than 

the other factors, followed by Fs 2. The interactions 

of Fs and Nf on the method’s hyperparameters, the 

heatmap shows that the Learning rate and Batch size 

especially affect Nf 1, the Momentum affects Nf 3 

and Fs 2, the Learning rate and Activation function 

affect Fs 3, and the Batch size affects Fs 4. 

Overall, Model 1 is more reactive among all models 

and in itself. Model 2 has a structure that is similar to 

Model 3, but Model 3 presents a better performance; 

Model 4 has an outcome comparable to Model 3, but 

the factors of layers 5 to 8 showed no strong 

interactions. 

CONCLUSION 

In this paper, we propose to analyze the impact of a 

convolutional layer on other convolution layers and 

their behavior concerning the hyperparameters Nf, 

Fs, Learning rate, Momentum, Batch size, and 

Activation function. This analysis allowed us to 

achieve two goals. First, guide the initial choice of 

these hyperparameters because this is usually defined 

by the researcher’s experience on the subject. The 

second is introducing a method of optimization and 

analysis for CNNs. 

The first goal is partially done using the output of 

DOE, ANOM, and the main effects plot. The 

experimental table alone provides insight into the 

behavior of CNNs, but it is an overall result. While 

the mean effect plot shows the best level for each 

factor, together with ANOM, it is a powerful tool for 

identifying the best set of hyperparameters. However, 

none of the previous techniques are concerned with 

how each hyperparameter affects the other layers. 

The interaction map presents the view among factors 

necessary for the complete understanding of CNN, 

but even with a small number of factors/levels, the 

result can be confused. The translation of interaction 

maps into a heatmap simplified the reading and 

identifying of the interactions among layers; in this 

way, it was possible to find optimizations and 

solutions for CNNs, achieving the second goal. 

The results of this research showed that Model 3 is 

the best choice for architecture since it has the best 

results and is deep enough for the task of 

classification with both datasets — in contrast to 

Model 4, which has doubled its size and requires 

more computational work to reach a similar result. 

Models 1 and 2 can achieve a good response, even 

though they present a significant variation in results 

— which is different from the slight variation of 

Models 3 and 4. 

TABLE III.  HIERARQUICAL IMPORTANCE FROM ANOM

 

 Model 1 Model 2 Model 3 Model 4 

 
MNIST CIFAR-10 MNIST CIFAR-10 MNIST CIFAR-10 MNIST 

CIFAR-

10 

Learning rate 10 10 3 2 1 2 1 2 
Momentum 8 4 10 6 11 8 10 9 

Batch Size 2 2 12 5 4 3 4 4 
Activation Function 1 1 1 3 3 1 2 1 

Fs 1 7 7 4 7 8 12 9 11 

Nf 1 4 9 11 4 6 5 6 5 
Fs 2 9 5 5 8 10 6 12 8 

Nf 2 3 8 8 9 7 7 8 15 

Fs 3 5 6 2 1 2 4 3 3 

Nf 3   6 12 12 11 15 16 

Fs 4   9 10 5 9 5 6 
Nf 4   7 11 9 10 14 18 

Fs 5       18 19 
Nf 5       13 13 

Fs 6       11 10 

Nf 6       16 20 
Fs 7       17 7 

Nf 7       19 17 
Fs 8       20 14 

Nf 8       9 12 
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A Learning rate of 0.0001 and Tanh as Activation 

function yield better responses in architectures that 

have one convolution layer followed by Max pooling 

layer and Activation function; on the other hand, a 

Learning rate of 0.001 and ReLU function work 

better with architectures that have a convolutional 

layer followed by sequence of Activation function, 

convolutional layer, Activation function, and Max 

pooling layer. Small models have higher accuracy 

with a Momentum value of 0.8, whereas a 

Momentum of 0.9 is better for bigger architectures. 

The best choice for Batch size is 128. 

The MNIST dataset is better with 7x7 Fs, and the 

CIFAR-10 dataset had a good response with both 

sizes. Regarding Nf, the rule is double the quantity in 

relation to previous layers or retain the same. 

Finally, heatmaps display that the third layer is the 

most critical and interactive related to the method’s 

hyperparameters – changes related to this layer 

should be well assessed since any modification can 

affect the accuracy of CNN. The first and fourth 

layers strongly interact with Batch size – as long as 

the CPU memory is available, it is recommended to 

set up as large as possible - and the second layer 

interacts more with Momentum. Meanwhile, the 

second layer showed strong interaction among all 

layers related to Nf and Fs, followed by the fourth 

layer; it is recommended to consult ANOM before 

any changes. 
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