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Abstract. This paper presents our experience with radar data analysis for single and dual
polarimetric systems, using machine learning techniques to explore complex data and obtain
an overview and better understanding of the observed phenomena. An application of the Multi-
layer Perceptron technique (MLP) is applied for the Severe Weather Event (SWE) forecast using
weather radar as input data. After training, were obtained models that can support the decision
about SWE alerts in the state of Paraná. The results indicate a detection of 81.40% for the stud-
ied SWEs and a 78.06% agreement for cases identified by a lightning detection network. This
preliminary study showed that, for events up to 157 km radar, it is enough to evaluate the model
that has as input the CAPPI radar product. This result can facilitate the forecast, because it
does not require the volumetric input of the data in most cases of SWE detection.
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1 INTRODUCTION

From January 2015 to July 2016, Civil Defense conducted 106 records of severe weather
events in the state of Paraná, and at least 39753 people were directly affected by strong wind,
heavy rain, hail and tornadoes (Defesa Civil, 2015,2016).

For nowcasting, radar is one of the best tools available, it offers real-time monitoring, with
good resolution and enables three-dimensional view of the data (Fabry, 2015). In addition, it
is possible to analyze a Severe Weather Event (SWE) based on the data of atmospheric electric
discharges, a fact already explored by Lima (2005), Darden (2010), Murphy (2006) and Liu
(2012).

Due to the large volume of data, machine learning techniques have been used in meteorol-
ogy, both for classification as shown by Damian (2011) and Neto (2008) and for forecasting as
shown by Anochi (2015). In order to identify the occurrence of SWEs, the Multilayer Percep-
tron (MLP) machine learning technique will be applied to the radar data, to obtain identification
models that estimate if a storm contain a SWE in very short time (30 minutes or less). The re-
sults are compared to atmospheric electric discharges data to better evaluate the model.

2 METEOROLOGICAL CONCEPTS

2.1 Severe Weather Event (SWE)

A Severe Weather Event (SWE) is a storm capable of generating strong wind, heavy rain,
hail, tornadoes and lightning (Maddox, 1980). These SWE usually occur in a convective envi-
ronment of vertical development, due to the generation of currents within the storm cells (Fabry,
2015). These SWE are also associated with large social and economic impacts (Doswell, 2001).

In fact, from January 2015 to June 2016, more than 100 SWEs has occured in Paraná
state, causing social and economic impacts, affecting 39753 people directly. Among the events
reported by the Civil Defense, the different SWEs presented in Table 1 were selected for this
study.

2.2 Dual Polarization Weather Radar

Radar is one of the best tools available for monitoring and forecasting as it provides real-
time monitoring with good spatial resolution and allows a three-dimensional view of the data
(Sauvageot, 1992), (Rinehart, 2004).

In a simplified form, the radar consists of a transmitter, a receiver, an antenna and a decod-
ing and processing system. Radar is a remote sensing tool, that is, through the electromagnetic
radiation, collects data without coming into direct contact with the study target (Novo, 1992).

Data collection occurs when the radar transmits a beam of electromagnetic radiation and
captures the energy reflected by the particles present in the atmosphere. This energy is amplified
and, given the time interval between emission and echo return, it is possible to determine the
distance from the target to the radar.
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Table 1: SWEs used in the study

Date Time SWE type Affected city

01/02/2015 12:00 MN windstorm Foz do Iguaçu

07/13/2015 7:23 PM windstorm Matelândia

07/13/2015 8:15 PM windstorm Ampére

07/13/2015 9:53 PM windstorm/heavy rain Francisco Beltrão

07/14/2015 10:15 AM tornado Francisco Beltrão

11/23/2015 1:30 PM windstorm Umuarama

11/26/2015 11:46 PM heavy rain Francisco Beltrão

12/28/2015 9:15 PM windstorm Francisco Beltrão

02/27/2016 9:53 AM heavy rain Francisco Beltrão

03/22/2016 3:15 AM tornado Capitão Leônidas Marques

In conventional radar, with single polarization, the emitted and received electromagnetic
signal has only one orientaton (vertical or horizontal), with horizontal orientation being more
common. Thus, a simple polarizing radar is able to obtain information from the targets only
in one orientation. The dual polarization radar has the propagation of electromagnetic signal
with orientations both horizontally and vertically, being able to obtain information in the two
orientations (Fabry, 2015). The polarimetric variables provide additional information about the
shape and even size of the target (Kumjian, 2013), (Fabry, 2015).

The data collected by the radar are in spherical coordinates, where the position of each data
is described in terms of (θ, φ, r), where θ is the angle of antenna elevation, φ is the angle of
clockwise rotation of the antenna relative to the geographic North, called the azimuth angle,
and r is the distance from the radar to target. The data collected from the radar for a full scan
and fixed elevation is called PPI (Plan Position Indicator). The collection of successive PPIs
of the radar is a volumetric scanning. A two dimensional representation of the volume data is
obtained by a selection of ranges at several PPIs, called CAPPI (Constant Altitude Plan Position
Indicator). Therefore, a CAPPI product (Fig. 1) is the information at a certain altitude, so that
all elevations can contribute to the generated product (Fabry, 2015).

The following variables, obtained from radar volume data were used in this study:

Reflectivity (Z). The measure of a target’s efficiency in intercepting and returning the energy
emitted by the radar is called reflectivity. Thus, reflectivity is dependent on the sizes, formats,
quantity and dielectric properties of the targets. Reflectivity is one of the most widely used
variables in weather forecasting. High reflectivity values (up to 45 dBZ) are generally associated
with heavy rainfall, if these values are between 5 and 12 km of altitude, they are associated with
severe storm (Fabry, 2015).

Radial velocity (V). The radial velocity is how fast the detected target is moving away or ap-
proaching the radar. Using the Doppler effect, the radar estimates the velocity at which the
target moves away or stay closer to the radar in the direction of the beam. By convention, neg-
ative values represent particles comming toward the radar and positive values, particles moving
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Figure 1: Example of PPI and CAPPI. In this case, a CAPPI is obtained by a selection of ranges at several
PPIs to create a 2D image of the volume scan. Figure source: Fabry (2015).

away from radar (Fabry, 2015).

Differential Reflectivity (ZDR). Differential Reflectivity (ZDR) is the difference between ZHH

(reflectivity with signal emitted and captured horizontally) and ZV V (reflectivity with signal
emitted and captured vertically). The variable ZDR is widely used to differentiate rain, hail,
snow, and even non-meteorological targets (Kumjian, 2013).

Copolar Correlation (RHOHV). The Copolar Correlation (RHOHV) has no unit of measure
and represents the correlation between the horizontal and vertical polarized Z signals at a given
point in space (Rinehart, 2004). The values ofRHOHV vary between 0 and 1.0 and can be seen
as a measure of the similarity between horizontal and vertical polarization signals (Kumjian,
2013). This variable describes physical characteristics of the target, being closer to 1.0 the
more uniform the target, since the vertical and horizontal signals tend to be the same.

Phase Differential (PHIDP). The phase differential (PHIDP), measured in degrees, is the dif-
ference between the phase emitted and received horizontally and the phase emitted and received
vertically in a pulse (Fabry, 2015). The variable PHIDP has radial variations, since cumula-
tive changes in the phase difference for the complete pulse journey. Thus, PHIDP is not rarely
replaced by its spatial derivative, KDP (Fabry, 2015).

Specific Phase Differential (KDP). The Specific Phase Differential (KDP) variable, is the spa-
tial derivative of PHIDP (Fabry, 2015). KDP is an excellent estimator for precipitation, as pre-
sented by Ruzanski and Chandrasekar (2012), values above 2◦/km indicate a significant amount
of liquid or oblate water.

Due to vertical development, convective storms are associated with shear, especially at low
and medium levels (Fabry, 2015). Traditionally, the shear is obtained by the difference of the
Doppler velocity between two points, divided by the distance between these two points, being
possible to describe 3 shear fields: vertical, radial and azimuthal (Newman et al., 2013), as
described below .

The azimuthal shear (AZS) is the difference of velocity between 2 bins at the same dis-
tance r from radar, at the same elevation θ and consecutive azimuths φi and φi+1 and divided
by the distance d between these two bins.

The radial shear (RS) is the difference in velocity between consecutive 2 bins ri and ri+1,
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at the same elevation θ and azimuth φ, divided by the distance d between these two bins.

The vertical shear (VS) is the velocity difference between 2 bins with the same azimuth φ
and radar distance r, but in consecutive elevations θi andθi+1, divided by the distance d between
these two bins.

Fig. 2 shows the area of the radar used in this study, a polarimetric weather radar located
in the west of Paraná state.

Figure 2: Example of the range covered by polarimetric radar from SIMEPAR over Paraná state. The circle
centering position is where is the radar.

2.3 Atmospheric electric discharge
Atmospheric electric discharges are the result of the development of intense electric charge

centers in the cloud, which exceeded the electrical insulation capacity of air resulting in the dis-
sipation of the electric charge centers. Atmospheric electric discharges can indicate the severity
of a storm by its position and amount. As presented by Holle, et. al. (1994), lightning tends
to increase and concentrate in the convective regions during the storm maturity of a convective
storm and decay in the phase of storm dissipation.

The types of atmospheric electrical discharges are classified according to where they orig-
inate and where they arrive (Lima, 2005): Intra Cloud (IC) and Cloud to Ground (CG). The
increase in total density of atmospheric electrical discharges (Total Lightning-TL), sum of the
densities of CG and CI, is a good indicator of SWE. This phenomenon is called Lightning Jump
(LJ), and it happens minutes before the occurrence of a SWE (Schultz et al, 2011).

Earth Networks Total Lightning Network (ENTLN) is the world’s largest global network
for detecting IC and CG types, with high sensor density and operating in real time (Liu and
Heckman, 2012). In this work, IC and CG data provided by ENTLN are used to calculate CG
density and LJ from total lightning (CG added to IC).

3 MULTILAYER PERCEPTRON (MLP)
As defined by Haykin (1999), an artificial neural network is a parallel distributed system

massively interconnected by simple processing units called neurons whose modeling is inspired
by the functioning of biological neurons.
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The figure 3 exemplifies the structure of a neuron and its major components: input signals
x, sinaptic weights w, summing junction, bias b, activation function f(.), and output y. The
k-index indicates that it is the k-th neuron of the artificial neural network.

Figure 3: Representation of an artificial neuron.

The synaptic weights indicate the weight that each component of the input have in the
summing junction, representing the connection among neurons in the network. The summing
junction is a linear combiner, it is responsible for the sum of the input signals,considerate by
the weight of each synapse. The activation function generates the output of the neuron from
the value of the sum function and the associated bias, also ensuring that the output is in a finite
amplitude range. The bias is a linear term to be added to the summing junction, it represents a
factor with external explanation.

Mathematically, given an input x ∈ <n, such that x = (x1, x2, ..., xn) and has n features, a
weight vector wk ∈ <n, with w = (wk1, wk2, ..., wkn). Then, the output of this neuron is given
by

yk = f(vk) = f(uk(x) + bk),

such that

uk(x) =
n∑

i=1

wkixi

is the summing junction, bk ∈ < is the bias and f(.) is the activation function.

In general, for output ∈ [0, 1], the most used activation function is the sigmoidal, presented
by Eq. 1 (Marsland, 2015).

f(vk) =
1

1 + e−vk
(1)

The learning of an artificial neural network is stored in the synaptic weights that are mod-
ified (updated) at each learning iteration, until one or more pre-determined stop criteria are
satisfied (Haykin, 1999).

The perceptron neural network is a supervised network (uses the desired output to improve
its learning) that uses one or more independent neurons for processing, capable of solving lin-
early separable problems. The Multilayer Perceptron (MLP) network is an enhancement of
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perceptron, including intermediate layers of neurons, making possible its application to non-
linearly separable problems, widely used for its simplicity and easy implementation (Marskin,
1999).

The Fig. 4 exemplifies the architecture of an MLP.

Figure 4: Example of the architecture of a MLP.

The MLP exemplified in Fig. 4 has 3 layers: the input layer, output layer and an interme-
diate layer, also known as layer of hidden neurons or simply hidden layer. This MLP has input
with r attributes, n hidden neurons, and 1 output.

Thus, in this MLP (Fig. 4), given an input x = (x1, x2, ..., xr) then

zj = f(z∗j + θaj) = f(wT
j x+ θaj), (2)

where f(.) is a activation differentiable function, wT
j x is the scalar product between the weight

vector wj and the input vector x. The θaj component is the linear term (bias) related to j-th
hidden neuron position .

In that case, the output y has the form:

y = f(y∗) = f(vT z + θb), (3)

where θb is the linear term related to output, vT z is the scalar product between the vector of
hidden layer weights v and z vector whose components are obtained by Eq.2 and f(.) is a
activation function.

One way to update the synaptic weights during MLP learning is to use the backpropagation
algorithm.

The backpropagation algorithm is a down-gradient-based method for calculating the deriva-
tives of the error function in relation to the synaptic weights in order to find a set of weights
to minimize error through repeated exposure of the instances (Bishop, 1995). According to
Haykin, (1999) and Marsland (2015), it is the main algorithm used in the training of supervised
neural networks.

Let E be the error associated with output y, vj the component of the vector of weights v
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and d the desired output for y. By the chain rule

−∂E
∂vj

=
∂E

∂y∗
∂y∗

∂vj
=
∂E

∂y∗
zj.

The output error is the difference between the desired output and the desired output. Thus,
in order to proceed in the opposite direction of the error, set

∂E

∂y
= −(d− y).

Then, the weight adjustment for vj is given by Eq. 4. In Eq. 4 η is the learning rate. According
to Bishop (1995), η is a positive and small value. Under these conditions, the weight vector
converges to the point at which the error is minimized. However, if η is too small, learning
becomes slow, and if η is large value, learning may diverge (Bishop, 1995).

∆vj = η(d− y)f ′(y∗)zj (4)

Suppose f(.) Is the sigmoidal function as the activation function in all neurons of the output
layer. Thus,

f(y∗) =
1

1 + e−y∗

implies in Eq. 5.

f ′(y∗) =
e−y

∗

(1 + e−y∗)2
(5)

Substituting 5 into 4 and simplifying, the term for updating the weights of the output layer
is given by

∆vj = −y(1− y)(d− y)zj. (6)

That is, vj is updated by

vj = vj + ∆vj. (7)

Similarly, with a sigmoidal activation function, the update term for the weights wij is

∆wij = η
∑
k

(dk − yk)yk(1− yk)vjkzj(1− zj)xi, (8)

and updated wij is

wij = wij + ∆wij. (9)

The learning of a neural network supervised through backpropagation can be summarized
by the following steps:

1. Present a training instance, to the artificial neural network;

2. Determine the output y by the artificial neural network for the presented input;

3. Calculate the error in the network output comparing to the desired output d;

4. Update the weights of the neurons of the outer layers to reduce the error;

5. Backpropagate the error to the neurons from the innermost layers, towards the input layer;

6. Adjust the weights of the innermost neurons;
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Identification of SWE with Meteorological Radar and MLP

7. Repeat the previous steps until the stop criterion is satisfied.

The main optimal stopping criterion for MLP is the minimum error curve of the validation
set. The validation set is extracted from the test set that has its error computed at each iteration
of the learning process. If the error in the validation set goes through to a minimum it means
that the network is losing its generalization capacity (Marsland, 2015).

4 METHODOLOGY

The methodology applied in this study can be described by the following steps:

1. Polarimetric radar data collection;

2. Pre-processing of data (correction of missing data and resolution, normalization, shear
calculation, removal of noise and reduction of dimensionality of the input) and inclusion
of the classes to the data set;

3. Separation of the test and training sets;

4. Training of the MLP technique, generating the models M-MLP3D and M-MLP2D;

5. Identification of SWE regions using atmospheric electric discharges data, and generation
of the M-ENTLN model;

6. Comparison of the models obtained by MLP with each other and with M-ENTLN and
study and analysis of the results.

Each volumetric data (radar file), has points to each 500 m from radar up to 240 km, for
between 10 to 17 elevations and 360 azimuths. The CAPPI product (Fig 1) has points to each
500 m from radar up to 240 km.

As pre-processing data was used correction of missing data and resolution, normalization,
calculation of shears, noise removal, reduction of dimensionality of the input and transform the
radar file data to tridimensional volume in cartesian coordinates (grid).

After the radar data interpolation into a cartesian grid was performed, the points where Z
were less than 30dBZ were excluded because they are not representative in a convective storm
(Maddox, 1980).

A point in a convective storm that “the information of the occurrence of SWE in this storm
is unknown” is classified as 0 (desired output) and a point that “the information of the occur-
rence of SWE in this storm is known” is classified as 1 (desired output).

The M-MLP3D model is obtained by the training MLP technique over the volumetric radar
data, and M-MLP2D model is obtained training the MLP technique with CAPPI radar product.

Each radar file has only one region where the information of the SWE occurrence is known.
Among the 43 files (with a complete volumetric scan) available, 33 were used for the training
of both techniques (M-MLP3D and M-MLP2D) and 10 to verify the generalization (test set).

The input data set consists of vectors containing the normalized values of Z, ZDR, RHOHV,
KDP, HMAX, AZS , RS, and and VS for each grid point and for each radar file, in that order.
Where HMAX is the altitude of the point of greatest reflectivity per column.

CILAMCE 2017
Proceedings of the XXXVIII Iberian Latin-American Congress on Computational Methods in Engineering
R.H. Lopez, L.F.F. Miguel, P.O. Farias (Editor), ABMEC, Florianópolis, SC, Brazil, November 5-8, 2017
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Both M-MLP3D and M-MLP2D uses one hidden layer and 43 hidden neurons and sig-
moidal activation function. More than 43 neurons and other activation function did not show
improvement to the models. For MLP training, the free software Scikitlearn, from Python
(Smola, 2004) was used. This package has a wide range of machine learning techniques imple-
mented and easy to use (Marsland, 2015).

For the selection of the test set files, an event should be contained integrally in the set. The
files related to the randomly selected SWE were those for the event of 07/13/2015.

The M-ENTLN model was obtained by the identification of CG density and LJ by region.
If there was a high CG density or there was LJ, probability there was a SWE there. This model
is an indirect way to estimate a SWE occurrence and compare with the other methods.

5 RESULTS AND DISCUSSIONS
MLP training generated two identification models, M-MLP3D using volumetric radar scan

and M-MLP2D that uses the CAPPI product at 3 km, while model M-ENTLN was obtained
only using atmospheric electric discharges.

Although the input (and output) in the models were point-by-point in the grid, we evaluated
regions within the grid, because the SWE is a phenomenon without a precise location within
the storm.

Fig. 5 shows an example of the models obtained by MLP M-MLP3D and M-MLP2D and
also M-ENTLN. In this case, M-MLP3D identified a region where the other models did not. In
fact, M-MLP2D identifies less regions than M-MLP3D, but in most of cases, those regions are
unidentified by M-ENTLN, suggesting that those regions can be misidentified by M-MLP3D.
The identification by M-MLP2D is the same as M-MLP3D to the previously identified regions
as presented by Table 2. That is, there is no loss of information for the regions in which the
occurrence of SWE is known. Generally M-MLP2D indetify 21.93 less % regions than M-
MLP2D. In the test set this difference in lower: 10.11 % less.

In Table 2, the accuracy of the training set shows the performance of model, while the
accuracy of test set shows the generalization capacity of models and the general set shows a
complete view about the models.

Table 2: Accuracy for the M-MLP3D and M-MLP2D models.

Model Training set Test set General set

M-MLP3D 78.78 % 90.00 % 81.40 %

M-MLP2D 78.78 % 90.00 % 81.40 %

In Fig. 5, the region inside the circle was an example of pre-identified region with SWE
occurrence. This region was classified as 1, but not all internal points were classified by the
models. This is because SWE did not occur in all the area, and these points could be misclassi-
fied.

In the training of the M-MLP3D and M-MLP2D models, the regions in which the occur-
rence of SWE are known (exemplified by the circle in the Fig. 5) refer to 10 specific events.
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(a) M-MLP3D (b) M-MLP2D

(c) M-ENTLN

Figure 5: Output obtained by (a) M-MLP3D, (b) M-MLP2D and (c) M-ENTLN for 11/23/2015. The images
represent the points identified by the respective models (in black) on the reflectivity attribute image. The
circled region shows where SWE occurred within 30 minutes.

However, it can be seen by the Fig. 5 that there are other regions identified by the models, but
whose occurrence information of SWE is unknown.

All regions that do not correspond to the events studied do not have previous information
about the occurrence of SWE. However, this information can be obtained indirectly when com-
paring the regions identified with M-ENTLN. In addition, the M-ENTLN model obtained 100 %
accuracy in the identification of the known SWEs, and therefore it is the most accurate model in
the study data. Because of that, the M-ENTLN model is used to study not pre-classified regions.

The occurrence of SWE is possible without occurrence of LJ, but whenever there is high
density CG it can be said that it is a SWE of the electric storm type. Therefore, classification
by M-ENTLN may still contain poorly classified data, in a small scale.

In this way, in order to validate the identification of M-MLP3D and M-MLP2D in regions
where information on the occurrence of SWE is unknown and also to verify if the regions
disregarded by M-MLP2D are relevant, the M-ENTLN model will be used.

Table 3 presents the percentage of regions identified by MLP models where M-ENTLN
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T. Silva, P. Siqueira, C. Beneti, M. Buzzi, L. Calvetti

confirms the SWE and the percentage of regions in which the MLP models identify SWE but
M-ENTLN does not confirm. In this table R1, R2, R3, R4, R4 and R5 represent:

• R1: Regions identified by M-MLP3D and M-ENTLN with 240 km radius from radar;

• R2: Regions identified by M-MLP2D and M-ENTLN with 240 km radius from radar;

• R3: Regions identified by M-ENTLN and not identified by M-MLP3D with 240 km
radius from radar;

• R4: Regions identified by M-ENTLN and not identified by M-MLP2D with 240 km
radius from radar;

• R5: Regions identified by M-ENTLN and not identified by M-MLP3D with 157 km
radius from radar;

• R6: Regions identified by M-ENTLN and not identified by M-MLP2D with 157 km
radius from radar.

Table 3: Comparison between identification of SWE by M-ENTLN, M-MLP3D and M-MLP2D

Set R1 R2 R3 R4 R5 R6

Training 75.00% 89.89% 32.50% 37.5% 16.19% 11.07%

Test 57.31% 62.12% 30.88% 33.78% 31.52% 15.20%

General 68.58% 78.06% 32.02% 35.98% 17.11% 13.72%

From the results presented in Table 3, it is possible to say that the M-MLP2D model has
a better correlation with the regions identified by M-ENTLN up to a radius of 157 km radar.
It fails to identify, in the test set, 15.20 % regions that M-ENTLN identifies, while M-MLP3D
does not identify 31.52 % on the same radius.

Based on the Table 3, it is possible to affirm that the regions not identified by M-MLP2D
are not relevant to the identification of up to 157 km of radar, but if there is a need to study
beyond 157 km, M-MLP3D has a higher rating.

Both M-MLP3D and M-MLP2D models presented good decision support tools, since they
have a correct identification in 81.40 % of the cases studied. In the test set, the correct identifi-
cation is 90 %, showing the generalization capacity of the models.

The M-ENTLN model, for the regions where the occurrence of SWE is known, has an
accuracy of 100 % and therefore, it was used to validate the models M-MLP3D and M-MLP2D.
However, M-MLP3D has more identified regions that are not identified by M-ENTLN when
compared to M-MLP2D.

If the entire range of the radar is considered, M-MLP2D identified more regions than M-
MLP3D in which M-ENTLN agrees, but more regions in which M-ENTLN identifies and M-
MLP2D does not identify.

When considered up to 157 km from radar, the number of regions in which M-ENTLN
identifies and M-MLP2D does not identify becomes smaller than the error of M-MLP3D. In
other words, M-MLP2D identifies less regions than M-MLP3D, but identifies more regions that
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agree with M-ENTLN.

Thus M-MLP2D is a good tool for the identification of SWE, up to 157 km radar, with
better identification than MLP3D.

Since from 157 km (for 0.5 degree elevation) the CAPPI data are the same as the PPI and
may not represent the storm at the chosen altitude (they are above 3 km, as illustrated by Fig. 1),
it was expected that regions over 157 km from radar could be misclassified. Thus, for data up
to 157 km from radar, it is adequate to use only M-MLP2D for SWE identification, decreasing
the input volume and consequently processing time.
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